Correlations induced by depressing synapses in critically self-organized networks with quenched dynamics

João Guilherme Ferreira Campos, Ariadne de Andrade Costa, Mauro Copelli and Osame Kinouchi

In a recent work, mean-field analysis and computer simulations were employed to analyze critical self-organization in networks of excitable cellular automata where randomly chosen synapses in the network were depressed after each spike (the so-called annealed dynamics). Calculations agree with simulations of the annealed version, showing that the nominal branching ratio σ converges to unity in the thermodynamic limit, as expected of a self-organized critical system. However, the question remains whether the same results apply to the biological case where only the synapses of firing neurons are depressed (the so-called quenched dynamics). We show that simulations of the quenched model yield significant deviations from σ = 1 due to spatial correlations. However, the model is shown to be critical, as the largest eigenvalue of the synaptic matrix approaches unity in the thermodynamic limit, that is, λc = 1. We also study the finite size effects near the critical state as a function of the parameters of the synaptic dynamics.

The whole paper is available here.



The Research, Innovation and Dissemination Center for Neuromathematics is hosted by the University of São Paulo and funded by FAPESP (São Paulo Research Foundation).


User login



1010 Matão Street - Cidade Universitária - São Paulo - SP - Brasil. 05508-090. See map.

55 11 3091-1717

General contact email:

Media inquiries email: