Self-Organized Supercriticality and Oscillations in Networks of Stochastic Spiking Neurons

Ariadne A. Costa, Ludmila Brochini and Osame Kinouchi

Networks of stochastic spiking neurons are interesting models in the area of Theoretical Neuroscience, presenting both continuous and discontinuous phase transitions. Here we study fully connected networks analytically, numerically and by computational simulations. The neurons have dynamic gains that enable the network to converge to a stationary slightly supercritical state (self-organized supercriticality or SOSC) in the presence of the continuous transition. We show that SOSC, which presents power laws for neuronal avalanches plus some large events, is robust as a function of the main parameter of the neuronal gain dynamics. We discuss the possible applications of the idea of SOSC to biological phenomena like epilepsy and dragon king avalanches. We also find that neuronal gains can produce collective oscillations that coexists with neuronal avalanches, with frequencies compatible with characteristic brain rhythms.

The whole paper is available here.



The Research, Innovation and Dissemination Center for Neuromathematics is hosted by the University of São Paulo and funded by FAPESP (São Paulo Research Foundation).


User login



1010 Matão Street - Cidade Universitária - São Paulo - SP - Brasil. 05508-090. See map.

55 11 3091-1717

General contact email:

Media inquiries email: