Publicações

Correlations induced by depressing synapses in critically self-organized networks with quenched dynamics

João Guilherme Ferreira Campos, Ariadne de Andrade Costa, Mauro Copelli and Osame Kinouchi

In a recent work, mean-field analysis and computer simulations were employed to analyze critical self-organization in networks of excitable cellular automata where randomly chosen synapses in the network were depressed after each spike (the so-called annealed dynamics). Calculations agree with simulations of the annealed version, showing that the nominal branching ratio σ converges to unity in the thermodynamic limit, as expected of a self-organized critical system. However, the question remains whether the same results apply to the biological case where only the synapses of firing neurons are depressed (the so-called quenched dynamics). We show that simulations of the quenched model yield significant deviations from σ = 1 due to spatial correlations. However, the model is shown to be critical, as the largest eigenvalue of the synaptic matrix approaches unity in the thermodynamic limit, that is, λc = 1. We also study the finite size effects near the critical state as a function of the parameters of the synaptic dynamics.

A Test of Hypotheses for Random Graph Distributions Built From EEG Data

Andressa Cerqueira; Daniel Fraiman; Claudia D. Vargas and Florencia Leonardi

The theory of random graphs has been applied in recent years to model neural interactions in the brain. While the probabilistic properties of random graphs has been extensively studied, the development of statistical inference methods for this class of objects has received less attention. In this work we propose a non-parametric test of hypotheses to test if a sample of random graphs was generated by a given probability distribution (one-sample test) or if two samples of random graphs were originated from the same probability distribution (two-sample test). We prove a Central Limit Theorem providing the asymptotic distribution of the test statistics and we propose a method to compute the quantiles of the finite sample distributions by simulation. The test makes no assumption on the specific form of the distributions and it is consistent against any alternative hypothesis that differs from the sample distribution on at least one edge-marginal. Moreover, we show that the test is a Kolmogorov-Smirnov type test, for a given distance between graphs, and we study its performance on simulated data. We apply it to compare graphs of brain functional network interactions built from electroencephalographic (EEG) data collected during the visualization of point light displays depicting human locomotion.

Stochastic Processes With Random Contexts: A Characterization and Adaptive Estimators for the Transition Probabilities

Roberto Imbuzeiro Oliveira

This paper introduces the concept of random context representations for the transition probabilities of a finite-alphabet stochastic process. Processes with these representations generalize context tree processes (also known as variable length Markov chains), and are proved to coincide with processes whose transition probabilities are almost surely continuous functions of the (infinite) past. This is similar to a classical result by Kalikow about continuous transition probabilities. Existence and uniqueness of a minimal random context representation are shown, in the sense that there exists a unique representation that looks into the past as little as possible in order to determine the next symbol. Both this representation and the transition probabilities can be consistently estimated from data, and some finite sample adaptivity properties are also obtained (including an oracle inequality). In particular, the estimator achieves minimax performance, up to logarithmic factors, for the class of binary renewal processes whose arrival distributions have bounded moments of order 2 + γ.

Inhibitory loop robustly induces anticipated synchronization in neuronal microcircuits

Fernanda S. Matias, Leonardo L. Gollo, Pedro V. Carelli, Claudio R. Mirasso and Mauro Copelli

We investigate the synchronization properties between two excitatory coupled neurons in the presence of an inhibitory loop mediated by an interneuron. Dynamic inhibition together with noise independently applied to each neuron provide phase diversity in the dynamics of the neuronal motif. We show that the interplay between the coupling strengths and the external noise controls the phase relations between the neurons in a counterintuitive way. For a master-slave configuration (unidirectional coupling) we find that the slave can anticipate the master, on average, if the slave is subject to the inhibitory feedback. In this nonusual regime, called anticipated synchronization (AS), the phase of the postsynaptic neuron is advanced with respect to that of the presynaptic neuron. We also show that the AS regime survives even in the presence of unbalanced bidirectional excitatory coupling. Moreover, for the symmetric mutually coupled situation, the neuron that is subject to the inhibitory loop leads in phase.

Potential Well Spectrum and Hitting Time in Renewal Processes

Miguel Abadi, Liliam Cardeño and Sandro Gallo

The potential well of a state can be interpreted physically as the energy that a stationary process needs to leave the state. We prove that for discrete time renewal processes, the potential well is the right scaling for the hitting and return time distributions of the state. We further detail the potential well spectrum of these processes by giving a complete classification of the states according to their potential well.

Estimating Parameters Associated with Monotone Properties

Carlos Hoppen, Yoshiharu Kohayakawa, Richard Lang, Hanno Lefmann and Henrique Stagni

There has been substantial interest in estimating the value of a graph parameter, i.e., of a real function defined on the set of finite graphs, by sampling a randomly chosen substructure whose size is independent of the size of the input. Graph parameters that may be successfully estimated in this way are said to be testable or estimable, and the sample complexity qz = qz(ε) of an estimable parameter z is the size of the random sample required to ensure that the value of z(G) may be estimated within error ε with probability at least 2/3. In this paper, we study the sample complexity of estimating two graph parameters associated with a monotone graph property, improving previously known results. To obtain our results, we prove that the vertex set of any graph that satisfies a monotone property P may be partitioned equitably into a constant number of classes in such a way that the cluster graph induced by the partition is not far from satisfying a natural weighted graph generalization of P. Properties for which this holds are said to be recoverable, and the study of recoverable properties may be of independent interest

On the Number of Bh-Sets

Domingos Dellamonica, Yoshiharu Kohayakawa, Sang June Lee, Vojtěch Rödl and Wojciech Samotij

A set A of positive integers is a Bh-set if all sums of the form a1 + ··· + ah, with a1,...,ah ∈ A and a1 ··· ah, are distinct. We provide asymptotic bounds for the number of Bh-sets of a given cardinality contained in the interval [n] = {1,...,n}. As a consequence of our results, we address a problem of Cameron and Erd˝os (1990) in the context of Bh-sets.
We also use these results to estimate the maximum size of a Bh-set contained in a typical (random) subset of [n] with a given cardinality.

Diversity improves performance in excitable networks

Leonardo L. Gollo​, Mauro Copelli and James A. Roberts

As few real systems comprise indistinguishable units, diversity is a hallmark of nature. Diversity among interacting units shapes properties of collective behavior such as synchronization and information transmission. However, the benefits of diversity on information processing at the edge of a phase transition, ordinarily assumed to emerge from identical elements, remain largely unexplored. Analyzing a general model of excitable systems with heterogeneous excitability, we find that diversity can greatly enhance optimal performance (by two orders of magnitude) when distinguishing incoming inputs. Heterogeneous systems possess a subset of specialized elements whose capability greatly exceeds that of the nonspecialized elements. We also find that diversity can yield multiple percolation, with performance optimized at tricriticality. Our results are robust in specific and more realistic neuronal systems comprising a combination of excitatory and inhibitory units, and indicate that diversity-induced amplification can be harnessed by neuronal systems for evaluating stimulus intensities.

Nonparametric statistical inference for the context tree of a stationary ergodic process

Sandro Gallo and Florencia Leonardi

We consider the problem of estimating the context tree of a stationary ergodic process with finite alphabet without imposing additional conditions on the process. As a starting point we introduce a Hamming metric in the space of irreducible context trees and we use the properties of the weak topology in the space of ergodic stationary processes to prove that if the Hamming metric is unbounded, there exist no consistent estimators for the context tree. Even in the bounded case we show that there exist no two-sided confidence bounds. However we prove that one-sided inference is possible in this general setting and we construct a consistent estimator that is a lower bound for the context tree of the process with an explicit formula for the coverage probability. We develop an efficient algorithm to compute the lower bound and we apply the method to test a linguistic hypothesis about the context tree of codified written texts in European Portuguese.

Investigation of rat exploratory behavior via evolving artificial neural networks

Ariadne de Andrade Costa and Renato Tinós

Background: Neuroevolution comprises the use of evolutionary computation to define the architecture and/or to train artificial neural networks (ANNs). This strategy has been employed to investigate the behavior of rats in the elevated plus-maze, which is a widely used tool for studying anxiety in mice and rats. New method: Here we propose a neuroevolutionary model, in which both the weights and the architecture of artificial neural networks (our virtual rats) are evolved by a genetic algorithm. Comparison with Existing Methods: This model is an improvement of a previous model that involves the evolution of just the weights of the ANN by the genetic algorithm. In order to compare both models, we analyzed traditional measures of anxiety behavior, like the time spent and the number of entries in both open and closed arms of the maze. Results: When compared to real rat data, our findings suggest that the results from the model introduced here are statistically better than those from other models in the literature. Conclusions: In this way, the neuroevolution of architecture is clearly important for the development of the virtual rats. Moreover, this technique allowed the comprehension of the importance of different sensory units and different number of hidden neurons (performing as memory) in the ANNs (virtual rats).

Páginas

 

NeuroMat

O Centro de Pesquisa, Inovação e Difusão em Neuromatemática está sediado na Universidade de São Paulo e é financiado pela FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo).

 

Login do usuário

 

Contato

Endereço:
Rua do Matão, 1010 - Cidade Universitária - São Paulo - SP - Brasil. 05508-090. Veja o mapa.

Telefone:
55 11 3091-1717

Email:
neuromat@numec.prp.usp.br

Contatos de mídia:
comunicacao@numec.prp.usp.br