Development of NeuroMat Open Databases [Computational Issues]

Amanda S. Nascimento Ana Carolina Q. Simões Claudia D. Vargas Kelly R. Braghetto

First Workshop of FAPESP's Center of Neuromathematics January, 2014

Agenda

Computational Issues

- NeuroMat Database: Its main purposes
- An Overview of Related Initiatives
- NeuroMat Database Development
- NeuroMat Computational Resources

General Issues

- Study of Brachial Plexus Injuries
- Open Data in Neuroscience

Discussion Session

NeuroMat Technology transfer in years 1 and 2

"The first activity of the Center in technology transfer will be the development of a collection of open source tools for basic neuroscience research, databases handling and clinical practice, in particular with respect to diagnostics and rehabilitation [...]."

The initial stage will be gathering typical data, in order to design, implement and test fundamental algorithms for data handling. These will be packaged into reusable containers, mostly libraries and possibly plug-ins for existing software products. [...]

The technology produced by the project will be released as free and open source software in all stages."

NeuroMat Database

Its main purposes are to:

• Store in an efficient and secure manner all data produced in the project.

• Support research activities included in the NeuroMat project scope.

Expected Benefits I

- Facilitate the interaction between the project members.
- Create "standardized" formats to report experiments, analyses, etc.
- Support complex queries over project's data.

- Keep data provenance.
- Improve efficiency and security in data storage.
- Support the development of analysis tools.

Expected Benefits II

- Support reproducibility.
- Enable comparison of data across studies.
- Promote meta-analyses.

- Enable data reuse, to generate and test new hypotheses.
- Share with the scientific community all kind of data produced in the project.

 \rightarrow Create access to data for those who cannot afford to pay for acquisition systems.

Related Initiatives

There is a growing experience with projects developing individual, often complementary, approaches to data storage and distribution that reflect the present fragmented state of neuroscience data representantion.

- Standards to report experiments in neuroscience
- Computational neuroscience
 - Web portals for resource sharing
 - Databases
 - Analysis tools

Web Portals for Neuroscience Resources*

Large-scale projects are usually initiated and carried out by a consortium of research groups in the context of an ambitious research programme.

https://www.humanbrainproject.eu

Human Brain Project

www.loni.ucla.edu/ICBM/

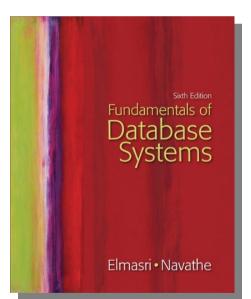
ICBM International Consortium for Brain Mapping

www.birncommunity.org

(*) Resources \rightarrow data sets, software tools, materials, etc.

Limitations of Existing Proposals for Neuroscience Databases

- Databases are seen as mere data repositories that do not necessarily create insights.
- Inadequate documentation.
- Unstructured Data.
- Ineffective solutions for data curation.


- Accessing available databases is often over complicated.
 - They are not intuitive enough.
 - They frequently require computer knowledge and additional software installation.
- They do not provide an infrastructure where heteregenous databases can be viewed as a unique integrated repository (federation of databases).

What is a Database?

Def 1. "A database is a collection of related data."

"By data, we mean **known facts** that can be **recorded** and that have **implicit meaning**."

Example: Names, telephone numbers, and addresses of the people you know.

These data can be recorded in an indexed address book or it can be stored in a hard drive, using a computer.

What is a Database?

Def 2. "A database has some source (miniworld) from which data is derived, some degree of interaction with events in the real world, and an audience that is actively interested in its contents."

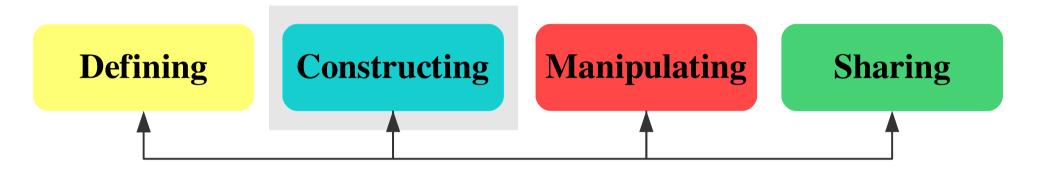
							ID		Name	Nick Name	Birthday
							1	Ang	elina White	Angel	11-23
							2	Leor	nardo Garci	a Leo	06-09
							3	Rob	ert Jones	Bob	02-15
	PersonID		IC) Addre	Address		City		Country	Туре	07-28
	1		11	1 88 Histon F	88 Histon Road		Cambridge		UK	Business	
	1		12	2 2 London F	Road	Che	eltenh	nam	UK	Residential	
	2 21		1 182 High S	182 High Street		Cranleigh		UK	Residential		
AddressID		ID		Area Code	Phone		e Number				
	11	111	1	1765	20 712	23 4	567				

Life Cyle of a Database

The life cycle of a database is the cycle of development and changes that a database goes through during the course of its life.

The cycle typically consists of several stages.

Defining

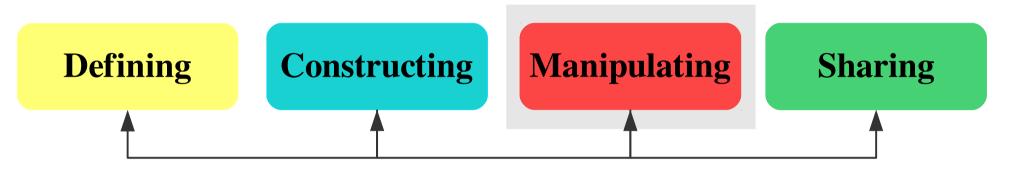


Defining or **modelling** a database involves specifying the **data types**, **structures**, and **constraints** of the data to be stored in the database.

Structure	Data Type	Size	Format	Constraint
register number	integer number	5 digits	Ex: 12345	uniqueness in the university
name	sequence of characters	Max.: 30 digits	Ex: "John Lennon"	-
birth date	date	-		Min. Value = 01/01/1900 Max. Value = 01/01/2014
	•••	•••	•••	•••

→ Data requirements are collected from users (e.g., people that produce or use the data).

Constructing

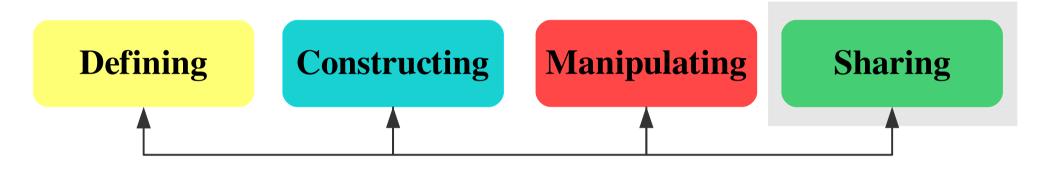


Constructing the database is the process of **storing** the data on some **storage medium**.

Related concerns:

- Security (data integrity, access control).
- Efficiency (fault tolerance, replication).
- Periodic backups.

Manipulating


Manipulating a database includes functions such as:

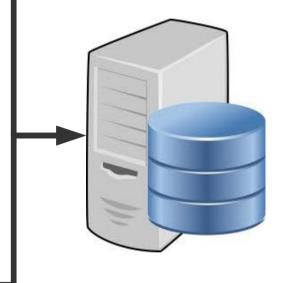
- Querying the database to retrieve specific data.
- Updating the database to reflect changes in the miniworld.
- Generating reports from the data.

	Reference	Forename	Surname	Address1	Town	Cou
1	1372	Elizabeth	House	521 Etiam Av.	New Rochelle	Angus
	1373	Abel	Dunn	903-5759 Magna Road	Rohnert Park	Co, Waterford
1	1374	Driscoll	Russo	238-4308 Orci Av.	Hannibal	Northumberla

Data are stored in or recovered from a database through the use of software tools specially developed to perform these tasks.

Sharing a database allows multiple users and programs to **access the database simultaneously**.

Overview of the NeuroMat Database


Various Organizational Data

People and their affiliation.

Team members.

Working groups.

Projects.

Neuroscience Data

"Raw" Data.

Processing tools and derived data.

Other documents (articles, reports, etc.).

Examples of Data in NeuroMat

Data acquired from experiments:

- → Electrophysiological (EEG, TMS, EMG, etc.).
- → Neuroimaging (MRI, fMRI, etc.).

Important: not only "raw" data, but also provenance data \rightarrow metadata

Derived data, gererated by processing tasks (filtering, transformation, analysis, etc.).

Important: not only the derived data, but also information about the process used to derive the data.

Data Provenance

Frequently asked questions for Scientists: *

Where was a document found? How was this data set produced? Were all facts included in this decision?

Were all the latest figures included in this diagram?

Can this scientific experiment be reproduced?

"Data provenance covers the provenance of computerized data. There are two main aspects of data provenance: ownership of the data and data usage."

* Source: The Open Provenance Model - http://openprovenance.org/

Data Provenance in NeuroMat

We want to keep track of the provenance information of all data and software tools produced in the project.

These information are fundamental to enable researchers to make a correct use of the resources produced in NeuroMat.

Example of Data Provenance in NeuroMat

Provenance information of an human EEG signal:

- Acquisition system (equipment model, manufacturer, software, ...).
- Equipment setting (sampling rate, amplifier filter, ...).
- Electrode placement system (international 10-20 system, ...).
- Size of the electrode cap (S, M, L).
- Information about the protocol of the experiment.
- Information about who conducted the experiment (affiliation, research team, ...).
- Information about the subject of the experiment (gender, age, medical records, ...).

Development of the NeuroMat Database

- We divided the database of **NeuroMat** in two big modules:
 - Module of "raw" data.
 - Module of derived data.

Important: we are currently working on the design/construction of the first module.

Development approach:

- gather data requirements of one laboratory at time;
- consider the (good) work already done in other related initiatives.

First case study (fundations of NeuroMat database):

Laboratory of Neuroscience and Rehabilitation Institute of Neurology Deolindo Couto Federal University of Rio de Janeiro

http://controlemotor.com.br/indc-npnr/

Standards to Report Experiments in Neuroscience

The Minimum Information for Biological and Biomedical Investigations (MIBBI) project*:

"promotes extant efforts developing minimum information (MI) guidelines for the reporting of biological and biomedical science to the wider community."

- Examples of MI guidelines under MIBBI project:
 - **MINI** for neuroscience investigations
 - **MINEMO** for event-related potential (ERP)/EEG data
 - MIfMRI** for fMRI studies

*http://www.biosharing.org/standards/mibbi
**http://www.fmrimethods.org/

The CARMEN* Project and the MINI** Guideline

Minimum Information about a Neuroscience Investigation (MINI): Electrophysiology

Frank Gibson*¹, Paul G Overton², Tom V Smulders³, Simon R Schultz⁴, Stephen J Eglen⁵, Colin D Ingram⁶, Stefano Panzeri⁷, Phil Bream⁴, Evelyne Sernagor⁶, Mark Cunningham⁶, Christopher Adams⁶, Christoph Echtermeyer⁸, Jennifer Simonotto¹, Marcus Kaiser¹, Daniel C Swan⁹, Martyn Fletcher¹⁰, Phillip Lord¹

The following section, detailing the reporting requirements for the use of electrophysiology, is subdivided as follows:

- 1. General features
- 2. Study subject
- 3. Task
- 4. Stimulus
- 5. Behavioral event
- 6. Recording
- 7. Time series data

Reporting requirement for electrophysiology

- 1. General features
 - (a) Date and time
 - (b) Responsible person or role
 - (c) Experimental context
 - (d) Electrophysiology type
- 2. Study subject
 - (a) Genus
 - (b) Species
 - (c) Strain
 - (d) Cell line
 - (e) Genetic characteristics
 - (f) Genetic variation
 - (g) Disease state
 - (h) Clinical information
 - (i) Sex
 - (j) Age
 - (k) Development stage

Checklist that identifies the minimum information required to report the use of electrophysiology in a neuroscience study.

* Code Analysis, Repository & Modelling for E-Neuroscience: http://www.carmen.org.uk/
** http://www.carmen.org.uk/standards/mini.pdf

The NEMO* Project and the MINEMO** Guideline

Minimal Information for Neural Electromagnetic Ontologies (MINEMO): A standards-compliant method for analysis and integration of event-related potentials (ERP) data.

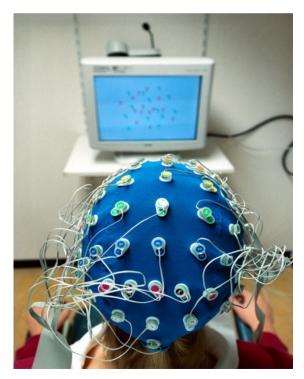
Frishkoff G, Sydes J, Mueller K, Frank R, Curran T, Connolly J, Kilborn K, Molfese D, Perfetti C, Malony A.

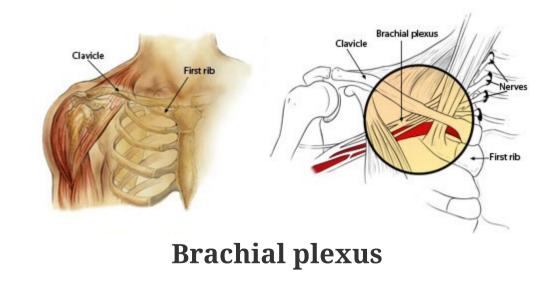
Subset of MINEMO terms that are required to save data to the NEMO portal (in addition to unique ID for each table)

- 1. Research lab (General Features) a. Institution b. Principal investigator (PI)
- 2. Experiment (General features) a. Experiment paradigm(s)
- 3. Publicationa. Publication typeb. DOI or File location (Path)
- 4. Study subjects (Group characteristics)

 a. Diagnostic classification
 b. Genus
 c. Species
 d. Age (average)
 e. Gender (#male, female subjects)
 f. Handedness (#RH, LH subjects)
 - g. Native language (modal)
- 5. Experiment conditiona. Experiment conditionb. Experiment task (Instructions)
- 6. Stimulus presentation

 a. Target stimulus type
 b. Target stimulus modality
- 7. Behavioral data collection a. Response type b. Response modality


- 8. EEG Data collection a. Electrode array (Layout) b. Sampling rate
- 9. EEG/ERP Data preprocessing a. ERP event b. ERP epoch length (in ms) c. ERP baseline (pre-target) duration d. Offline reference
- 10. EEG/ERP Data file


 a. Data file contents (EEG data type)
 b. Data file format
 c. Data file location (URI)
- MINEMO extends MINI (Minimal Information for Neuroscience Investigations) to the ERP domain.
- Checklist terms are explicated in NEMO, a formal ontology that is designed to support ERP data sharing and integration.

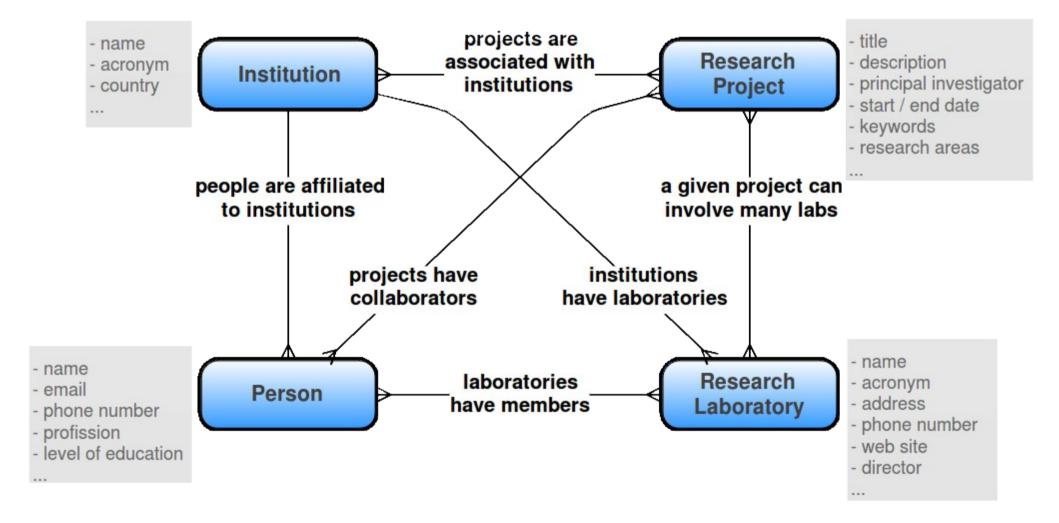
- * Neural ElectroMagnetic Ontologies: http://nemo.nic.uoregon.edu/wiki/NEMO
- ** http://www.ncbi.nlm.nih.gov/pubmed/22180824

Data Requirements at INDC

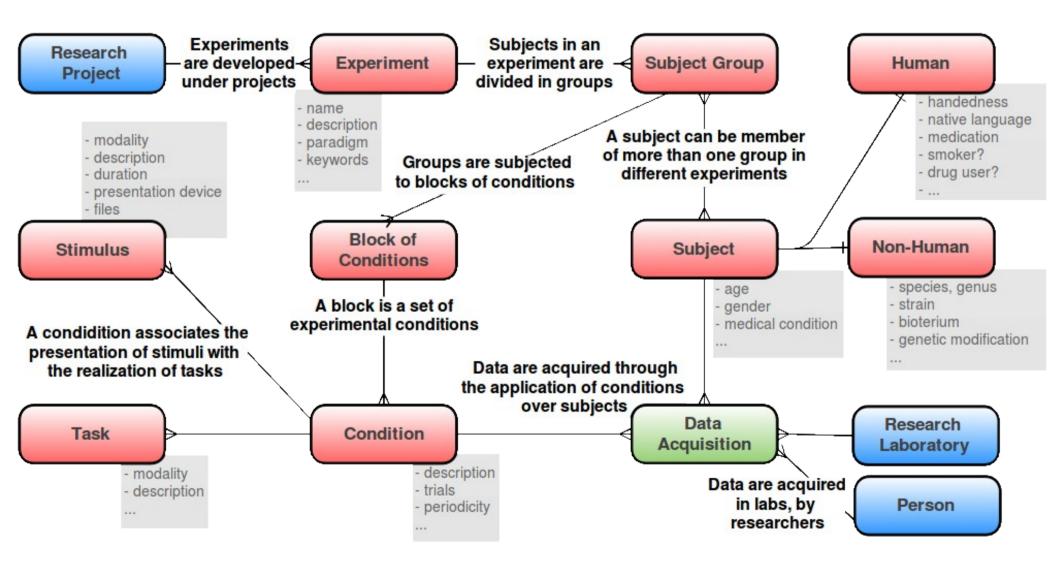
- Data collected in the experiments conducted by Claudia's team at INDC:
 - Experiments envolving EEG, TMS, EMG, and Stabilometry
 - Patients with brachial plexus injuries

EEG

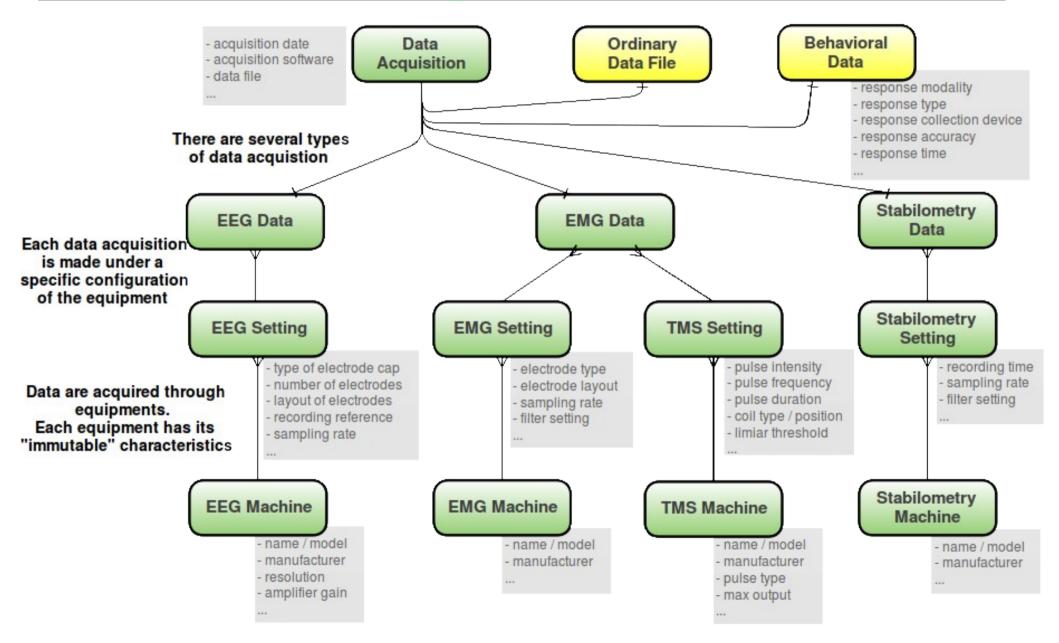
NeuroMat Database Model – Overview


Current state – 5 modules:

- Organizational Structure.
- Experiment Protocol.
- Electrophysiological Data Acquisition.
- Behavioral Data Acquisition.
- Documents.


Other previewed modules:

- Histopathology Data Acquisition.
- Molecular Data Acquisition.
- Neuroimaging Data Acquisition.
- Derived Data.


Organizational Structure Module

Experimental Protocol Module

Electrophysiological and Behavioral Data Acquisition Modules

Study-Specific Data

The structure of the database modules can "accommodate" an important portion of all data that can be collected in an electrophysiological experiment.

→ Data whose strutucture is common for all experiment. In other words, all data that can be described in therms of the standartized structure defined by the database model.

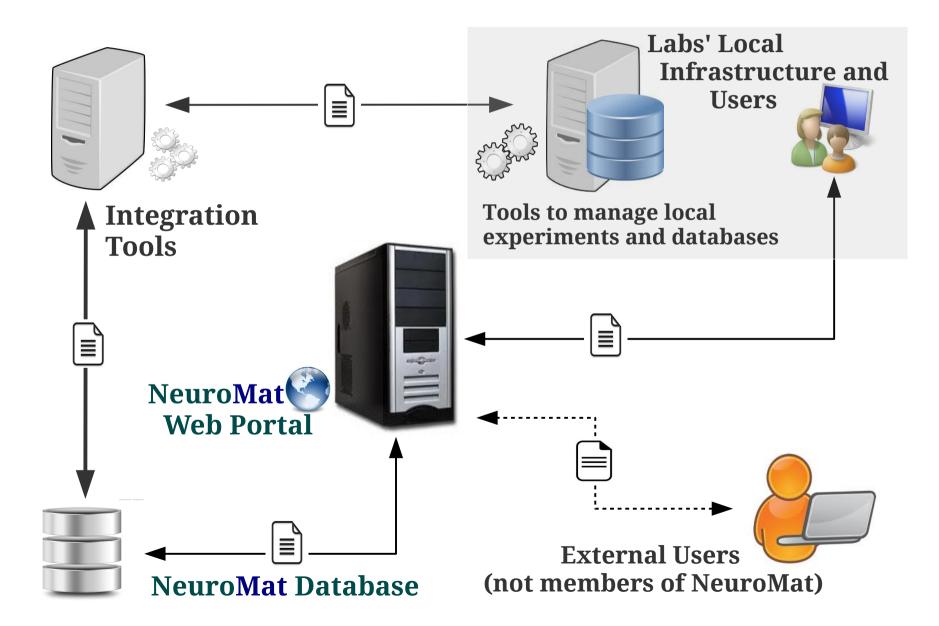
Problem: Experiments may result in other kinds of data, with variable structure.

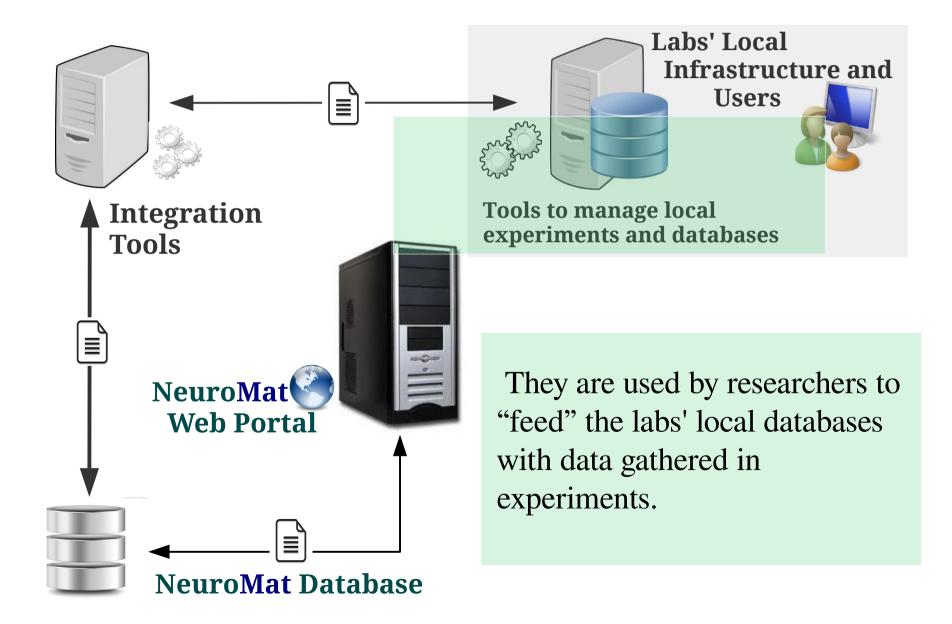
Generally, these data are study-specific, collected by means of questionnaires.

Example: Each study conducted at INDC gathers data from the volunteers by means of questionnaires designed by the researchers responsible for the study.

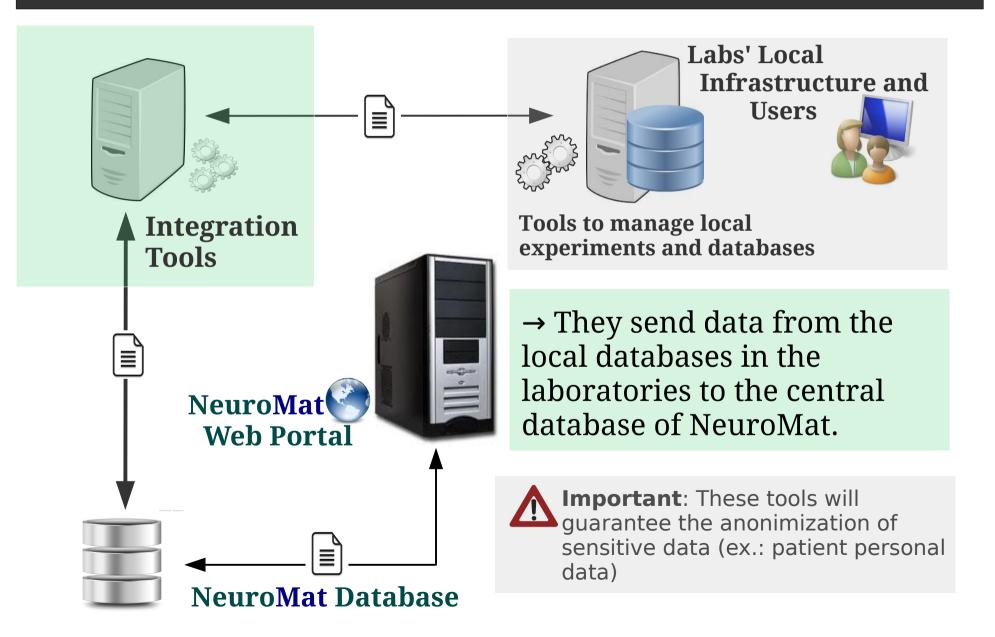
Computational solution proposed to digitalize study-specific data: → Digital Questionnaries

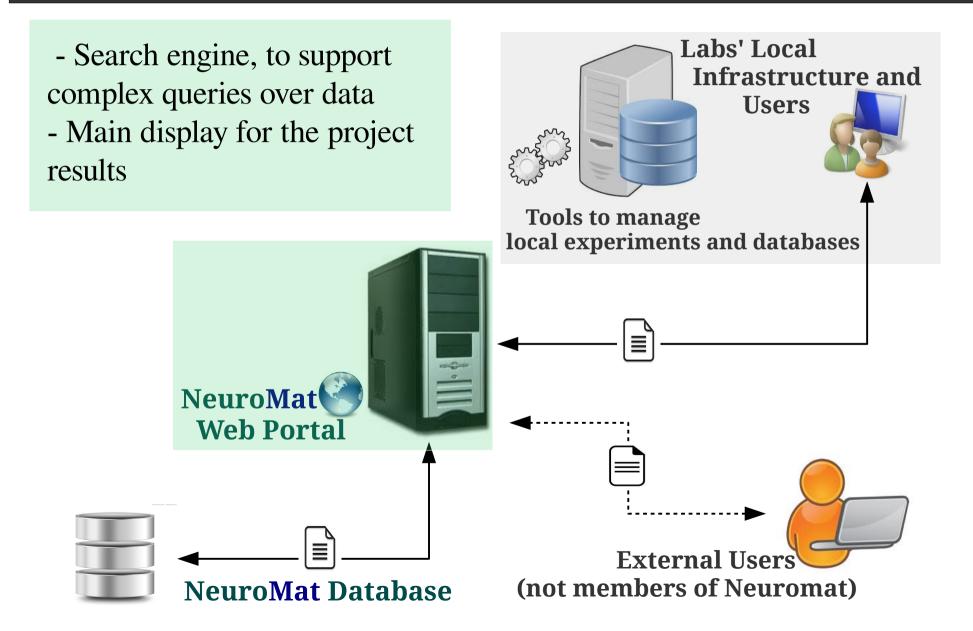
Digital Questionnaries


- There exist several software systems that enable users to create digital questionnaries and make them available online.
- Some of these systems are very "powerful":
 - Rich set of question structures and presentation formats
 - Data collected through the questionnaires can be stored in local databases, hosted in "private" servers → improved security


Next Steps

- To extract data requirements from other research groups.
- To add in the model neuroimaging experiments.
- To add in the model "derivated data" (and their provenance information).
- To develop the software tools that will interact with the NeuroMat database.


An Overview of NeuroMat Computational Resources


Tools to Manage Local Experiments and Databases

Integration Tools

NeuroMat Web Portal

Authorization Strategy (Access Control) for the NeuroMat Web Portal

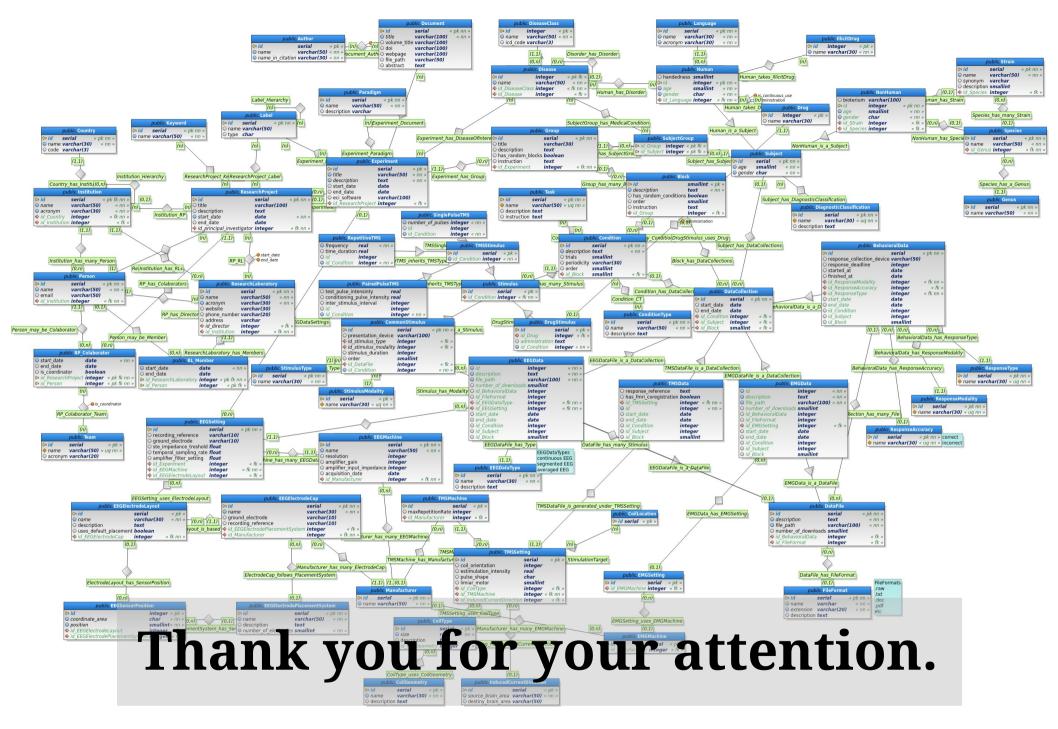
et state and

- At a first moment, the NeuroMat database will be used mainly to facilitate the interaction between the project members.
- Different classes of users, each one representing a different role in the project.
- Data access privilegies are defined according to the user's role.

Design and Development – NeuroMat Database

Team

- Amanda S. Nascimento (NUMEC USP)
- Ana Carolina Q. Simões (CECS UFABC)
- Carlos Ribas (NUMEC USP)
- Fabio Kon (IME USP)
- Kelly R. Braghetto (IME USP)


Collaborators (up to now)

- Claudia D. Vargas (INDC UFRJ) & her team
- André F. Helene (IB USP) & his team
- Gilberto Xavier (IB USP) & his team

This project is supported by:

→ NeuroMat database conceptual model in its current state.