*Antonio Galves, Eva Löcherbach*

We consider a new class of non Markovian processes with a countable number of interacting components, both in discrete and continuous time. Each component is represented by a point process indicating if it has a spike or not at a given time. The system evolves as follows. For each component, the rate (in continuous time) or the probability (in discrete time) of having a spike depends on the entire time evolution of the system since the last spike time of the component.