A system of interacting neurons stops spiking without external stimuli

G. Aguiar, R. Cofre, A. Oliveira and E. Presutti

January 19, 2014

G. Aguiar, R. Cofre, A. Oliveira and E. Presutti A system of interacting neurons stops spiking without external stimuli

Membrane potential

Membrane potential

Membrane _____ **Difference** in voltage between inside and outside of cell's membrane.

The membrane potential changes due to:

- interaction with the environment (leakage)
- interaction with other neurons

Interaction among neurons

Two neurons interact through electrical and chemical processes.

• Spike \implies Chemical transmission \implies reset/receive potential

Interaction among neurons

Two neurons interact through electrical and chemical processes.

• Spike \implies Chemical transmission \implies reset/receive potential

-

A >

Interaction among neurons

Two neurons interact through electrical and chemical processes.

- Spike \implies Chemical transmission \implies reset/receive potential
- Gap junction \implies Electrical transmission \implies share potential

Question

Can a system of interacting neurons remain active/spiking without external stimuli?

The model

Ours is a stochastic model for a finite system of neurons with:

- chemical transmissions
- electrical transmissions
- leaking effect

Time evolution

When a neuron spikes:

- Its membrane potential is **reset** to 0.
- Neurons which are influenced by it **receive** (by chemical transmission) an additional positive potential.

Time evolution

When a neuron spikes:

- Its membrane potential is **reset** to 0.
- Neurons which are influenced by it **receive** (by chemical transmission) an additional positive potential.

All the time:

- Leaking losses proportional to the membrane potential
- Gap junction action pushing potentials to an average value

Mathematical ingredients

- A constant defining the leaking rate.
- A constant describing the rate which the potentials converge to the average value.
- A spiking rate defined by an increasing function of the potential

	Motivation The model Results	
Results		

Assumption: the spiking rate is small if the potential is small.

Results

Assumption: the spiking rate is small if the potential is small.

Consequences:

• From time to time all neuron potentials become very small.

Results

Assumption: the spiking rate is small if the potential is small.

Consequences:

- From time to time all neuron potentials become very small.
- When all potentials are very small there is a probability that the system **never** spikes again.

Results

Assumption: the spiking rate is small if the potential is small.

Consequences:

- From time to time all neuron potentials become very small.
- When all potentials are very small there is a probability that the system **never** spikes again.
- Key: presence of leaking effect

Conclusion:

Theorem

The system has always only a finite number of spikes

3 →

3 x 3

Conclusion:

Theorem

The system has always only a finite number of spikes

- Question: Can a system of interacting neurons remain active/spiking without external stimuli?
- Answer: NO!

Thanks!

G. Aguiar, R. Cofre, A. Oliveira and E. Presutti A system of interacting neurons stops spiking without external stimuli

<ロ> <同> <同> < 回> < 回>

2