Classifying EEG data driven by rhythmic stimuli using a projective test

A. Duarte, R. Fraiman, A. Galves, G. Ost, C. Vargas

Work in progress

FAPESP - CEPID NeuroMat

January 23, 2014

Neurobiological problem

Do stimuli of different sources produce distinct brain processes?

Can we classify them?

- The stimuli consist of independent samples produced by different stochastic rhythmic sources.
- Each sample is a sequence of strong and weak beats, and silent units generated by a probabilistic source

More Precisely

- Each stochastic source is characterized by a probabilistic context tree.
- Statistical fact: each of them can be estimated consistently.
- Question: Can we distinguish samples produced by different sources?

Goal

- Our goal is to classify EEG signals driven by rhythmic stimuli.
- This is a problem of functional random data classification.
- Model selection in Electroencephalographic (EEG) data is a challenging task.

(2) (4)

• First rhythm: Waltz (Ternary).

- Symbols:
 - 2 strong beat.
 - 1 weak beat.
 - 0 silence unit.
- Stochastic rhythm generation:
 - start with a deterministic sequence

 $\cdots 2 1 1 2 1 1 2 1 1 2 \cdots$

• replace in a iid way each symbol 1 by 0 with a probability (say 20%).

- B. S.

A typical sample would be

 $\cdots 2 1 1 2 1 1 2 1 1 2 1 1 2 \cdots$ $\cdots 2 1 1 2 1 0 2 0 1 2 \cdots$

The correspondent context tree is

- Second rhythm: simplified Samba (Quaternary).
- •
- Symbols:
 - 2 strong beat.
 - 1 weak beat.
 - 0 constitutive silence unit or omitted weak beat.
- Stochastic rhythm generation:
 - start with a deterministic sequence

 $\cdots 2 \ 1 \ 0 \ 1 \ 2 \ 1 \ 0 \ 1 \ 2 \ \cdots$

• replace in a iid way each symbol 1 by 0 with a probability

A typical sample would be

 $\cdots 2 \ 1 \ 0 \ 1 \ 2 \ 1 \ 0 \ 1 \ 2 \ 1 \ 0 \ 1 \ 2 \cdots$ $\cdots 2 \ 1 \ 0 \ 0 \ 2 \ 1 \ 0 \ 1 \ 2 \ 0 \ 0 \ 0 \ 2 \cdots$

The correspondent context tree is

- Third rhythm: Independent rhythmic units.
- 🕩
- Symbols:
 - 2 strong beat.
 - 1 weak beat.
 - 0 silence unit.
- Chain generation:
 - choose any symbol in a iid way with probability 1/3.

3 A

A typical sample would be

$\cdots 2 \ 1 \ 0 \ 1 \ 1 \ 2 \ 2 \ 0 \ 1 \ 0 \ 2 \cdots$

The correspondent context tree is reduced to the root. Why?

< 6 >

不足下 不足下

Acquisition

- Each volunteer was exposed to two rhythmic blocks of 12 min each.
- Each rhythmic block is a concatenation of three rhythms:
 - $B_{WIS} = \{Waltz, Independent, Samba\}$
 - $B_{SIW} = {Samba, Independent, Waltz}$
- Each sample corresponding to a given rhythm lasts for 3 min and is preceded by a one minute interval of silence.

We mark each stimulus onset:

Constitutive silence unit $\longrightarrow V_0$ Weak beat $\longrightarrow V_1$ Strong beat $\longrightarrow V_2$ Omitted weak beat \longrightarrow Miss

(日) (同) (日) (日)

EEG data

A. Duarte, R. Fraiman, A. Galves, G. Ost, C. Vargas Classifying EEG data driven by rhythmic stimuli using a projective test

- R

Summarizing

- Stochastic Sources modeled by Probabilistic Context Trees.
- Each source can be statistically retrieved from a sample.
- EEG samples associated to each context tree rhythmic source.

Are the EEG samples statistically different?

How to tackle this question?

Projective Method

- Given two random samples of functional data, we want to test if these two samples came from the same source.
- Projective method: choose a randomly direction and perform a one dimensional statistical test for the projected data.
- This method was introduced in Cuesta-Albertos, Fraiman and Ransford (2006).
- This approach was successfully employed in the classification of linguistic sonority data in Cuesta-Albertos, Fraiman, Galves, Garcia and Svarc (2007).

化原因 化原因

Projective Method: groundwork

- If the laws of two random mechanisms are such that:
 - one of them is not "heavy-tailed".
 - the set of the directions in which the laws are the same has positive probability.
- Then: the laws are equals!

How to apply it?

- Consider each EEG signals collected from each electrode as an outcome of suitable random mechanisms.
- Given the Samba and Waltz EEG signals, we want to test

•
$$H_0 = \{P_{Samba} = P_{Waltz}\}$$
 (null hypothesis)
• $H_1 = \{P_{Samba} \neq P_{Waltz}\}$ (alternative hypothesis)

イヨト・イヨト

Under $H_0 = \{P_{Samba} = P_{Waltz}\}$, for each direction the laws are different.

Algorithm:

- Choose N independent directions $W_i, i = 1, \dots N$. (Brownian motions)
- For each *i*:
 - Test the null at level η by projecting Samba and Waltz on W_i, using Kolmogorov-Smirnov test.
 - Define

$$Z_i = \begin{cases} 1, \text{ if we rejected } H_0 \\ 0, \text{ if we do not rejected } H_0. \end{cases}$$

A B > A B >

• Define the average value

$$\bar{Z} = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

and reject H_0 if $\bar{Z} \ge c_{\alpha}$.

- Question: what should be the value of c_{α} to have a test of level α ?
- To answer this question we use a bootstrap procedure.

Planning:

- To use the protective method to classify EEG samples driven by Samba, Waltz and IID stimuli.
- This has not been done yet: our data sample is not big enough.
 Data is being collected!

But something can be done immediately with the small data set of the pilot study.

Preliminary question: for the EEG data driven by Samba

- Both Miss and V_0 time intervals correspond to silence units.
- However, from a structural point of view Miss and V₀ are entirely different.

Remember:

- Miss is an omitted weak beat.
- V₀ is a constitutive silence unit.

• From a structural point of view Miss and V_0 are entirely different.

- Is the brain "aware" of this distinction?
- More pragmatically: is our statistical tool able to catch this difference in the EEG signal?

글 > - < 글 >

V0 and Miss samples

A. Duarte, R. Fraiman, A. Galves, G. Ost, C. Vargas Classifying EEG data driven by rhythmic stimuli usin

Results

- $\bullet\,$ The number of elements in ${\cal M}$ and ${\cal V}$ are 54 and 126 respectively.
- We applied the test with N = 1000, B = 100, $\eta = \alpha = 0.1$.
- Pilot 6:

Elect	p-value
4	0.04
6	0.01
19	0.01
117	0.02
118	0.03
124	0.04

Pilot 6

Reject H0

Do not reject H0

A. Duarte, R. Fraiman, A. Galves, G. Ost, C. Vargas

Classifying EEG data driven by rhythmic stimuli using a projective test

To be continued....

A. Duarte, R. Fraiman, A. Galves, G. Ost, C. Vargas Classifying EEG data driven by rhythmic stimuli using a projective tes

イロト イポト イヨト イヨト