Fast generation of context tree models

Arnaldo Mandel

IME-USP

Antonio Galves

Florencia Leonardi

others ...

1/29

Making sense of sequencial observations

Phenomenon: stochastic process emitting symbols from a finite set, discrete time

abaabcabcccbacbaa

Purpose: model giving good predictions

Making sense of sequencial observations

Phenomenon: stochastic process emitting symbols from a finite set, discrete time

abaabcabcccbacbaa

Purpose: model giving good predictions

The model

A stochastic process X_n , $n \in \mathbb{Z}$ with values in a finite alphabet A. Specified by the true probabilities

 $\mathbb{P}(\mathbf{X}_t = \mathbf{x}_t \mid \text{all past})$

4/29

How much past must be remembered?

The model

A stochastic process X_n , $n \in \mathbb{Z}$ with values in a finite alphabet A. Specified by the true probabilities

 $\mathbb{P}(\mathbf{X}_t = \mathbf{x}_t \mid \text{all past})$

How much past must be remembered?

The model

A stochastic process X_n , $n \in \mathbb{Z}$ with values in a finite alphabet A. Specified by the true probabilities

 $\mathbb{P}(\mathbf{X}_t = \mathbf{x}_t \mid \text{all past})$

How much past must be remembered?

Context trees

Given a digital tree:

Words are read on paths from nodes to the root:10020201

Context trees generation

Context trees

Given a digital tree:

Words are read on paths from nodes to the root: 100 20 201

Context trees

Context tree (τ, p) :

τ : leaves of a digital tree

$p = \{p(\cdot|w) : w \in \tau\}$: probability distributions on A.

p(a|w) = probability of a appearing after context w

It really models...

Stationary processes: probabilities are fixed on time.

Equivalently: for each length, there is a fixed probability distribution on words of that length.

It really models...

Stationary processes: probabilities are fixed on time.

Equivalently: for each length, there is a fixed probability distribution on words of that length.

How good it is

Likelyhood of a sequence, given a tree: probability of occurrence

likelyhood bad — log-likelyhood good!

log-loss = -(log-likelyhood) even better

How good it is

Likelyhood of a sequence, given a tree: probability of occurrence

likelyhood bad — log-likelyhood good!

log-loss = -(log-likelyhood) even better

How good it is

Likelyhood of a sequence, given a tree: probability of occurrence

likelyhood bad — log-likelyhood good!

log-loss = -(log-likelyhood) even better

How to find a context tree

Given a sufficiently long observation, relative frequency of words is a maximum likelyhood estimator for probabilities (prayer or ergodicity)

a*cbaa*acba*cbaacbaa*c

p(cbaa) = 3/15= number of occurrences of cbaa / number of words of length 4

How to find a context tree

Given a sufficiently long observation, relative frequency of words is a maximum likelyhood estimator for probabilities (prayer or ergodicity)

a*cbaa*acba*cbaacbaa*c

p(cbaa) = 3/15= number of occurrences of cbaa / number of words of length 4

Start with the complete digital tree (up to some depth) and prune to taste.

How much?

Contending goals

- Predict the past: the bigger the tree, the better – maximizes likelyhood
- Predict the future: avoid overfitting, parsimony

Start with the complete digital tree (up to some depth) and prune to taste. How much?

Contending goals

- Predict the past: the bigger the tree, the better – maximizes likelyhood
- Predict the future: avoid overfitting, parsimony

Start with the complete digital tree (up to some depth) and prune to taste. How much? Contending goals

- Predict the past: the bigger the tree, the better maximizes likelyhood
- Predict the future: avoid overfitting, parsimony

Start with the complete digital tree (up to some depth) and prune to taste.

How much?

Contending goals

- Predict the past: the bigger the tree, the better – maximizes likelyhood
- Predict the future: avoid overfitting, parsimony

Start with the complete digital tree (up to some depth) and prune to taste.

How much?

Contending goals

- Predict the past: the bigger the tree, the better – maximizes likelyhood
- Predict the future: avoid overfitting, parsimony

Methods

Many methods prune the tree by offsetting the log-loss by a size penalty

- MDL (Rissanen)
- BIC (Schwartz)
- KT (Krichevcky-Trofimov)
- SMC (Galves et al.)

penalty proportional to log of the length

Methods

Many methods prune the tree by offsetting the log-loss by a size penalty

- MDL (Rissanen)
- BIC (Schwartz)
- KT (Krichevcky-Trofimov)
- SMC (Galves et al.)

penalty proportional to log of the length

Doing it all over

Assign a *cost* c(w) > 0 for each word w, and let $c(\tau) = \sum_{w \in \tau} c(w)$.

For $\alpha \in \mathbb{R}_+$, let

 $\tau_{\alpha}(x) = \text{tree minimizing} \quad \ell(\tau, x) + \alpha c(\tau) \log n$

au is *champion* if $au = au_{lpha}(x)$ for some lpha.

Doing it all over

Assign a *cost* c(w) > 0 for each word w, and let $c(\tau) = \sum_{w \in \tau} c(w)$.

For $\alpha \in \mathbb{R}_+$, let

 $\tau_{\alpha}(x) = \text{tree minimizing} \quad \ell(\tau, x) + \alpha c(\tau) \log n$

 τ is *champion* if $\tau = \tau_{\alpha}(x)$ for some α .

Why the champions?

• All previous tree selection models choose a champion tree, with C(w) = 1.

They are easy to produce -O(n) algorithm Selection can be done with post processing

Why the champions?

All previous tree selection models choose a champion tree, with C(w) = 1.
They are easy to produce - O(n) algorithm Selection can be done with post processing.

Why the champions?

All previous tree selection models choose a champion tree, with C(w) = 1.
They are easy to produce - Õ(n) algorithm Selection can be done with post processing.

Connection to network flow

