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Making sense of sequencial
observations

Phenomenon: stochastic process emitting
symbols from a finite set, discrete time

abaabcabcccbacbaa

Purpose: model giving good predictions
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The model

A stochastic process Xn,n ∈ Z with values in a
finite alphabet A.
Specified by the true probabilities

P(Xt = xt | all past)

How much past must be remembered?
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Context trees

Given a digital tree:
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Words are read on paths from nodes to the root:
1 0 0 2 0 2 0 1
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Context trees

Context tree (τ,p):

τ : leaves of a digital tree

p = {p(·|w) : w ∈ τ} : probability distributions
on A.

p(a|w) = probability of a appearing after
context w
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It really models...

Stationary processes: probabilities are fixed
on time.
Equivalently: for each length, there is a fixed
probability distribution on words of that
length.
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How good it is

Likelyhood of a sequence, given a tree:
probabilty of occurrence

likelyhood bad — log-likelyhood good!

log-loss = -(log-likelyhood) even better
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How to find a context tree

Given a sufficiently long observation, relative
frequency of words is a maximum likelyhood
estimator for probabilities (prayer or ergodicity)

acbaaacbacbaacbaac

p(cbaa) = 3/15
= number of occurrences of cbaa /

number of words of length 4
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General method

Start with the complete digital tree (up to
some depth) and prune to taste.
How much?
Contending goals
Predict the past: the bigger the tree, the
better – maximizes likelyhood
Predict the future: avoid overfitting,
parsimony
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Methods

Many methods prune the tree by offsetting the
log-loss by a size penalty

MDL (Rissanen)
BIC (Schwartz)
KT (Krichevcky-Trofimov)
SMC (Galves et al.)

penalty proportional to log of the length
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Doing it all over

Assign a cost c(w) > 0 for each word w , and let
c(τ) =

∑
w∈τ c(w).

For α ∈ R+, let

τα(x) = tree minimizing `(τ, x) + αc(τ) log n

τ is champion if τ = τα(x) for some α.
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Why the champions?

All previous tree selection models choose a
champion tree, with C(w) = 1.

They are easy to produce – Õ(n) algorithm
Selection can be done with post processing.
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Connection to network flow

−→
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