Random graphs (a droplet)

Y. Kohayakawa (São Paulo)

NeuroMat—First Workshop

IME/USP

20 January 2014

Partially supported by CNPq (477203/2012-4, 308509/2007-2) and by FAPESP (2013/07699-0, 2013/03447-6)

Aim of talk

A glimpse of the theory of random graphs

Aim of talk

A glimpse of the theory of random graphs

⊳ The Erdős–Rényi random graph

Aim of talk

A glimpse of the theory of random graphs

- ⊳ The Erdős–Rényi random graph
- ▷ A directed variant

Outline of the talk

▷ Preliminaries

- ▷ Preliminaries
 - Graphs

- ▷ Preliminaries
 - Graphs
- ▷ The Erdős–Rényi random graph

- ▷ Preliminaries
 - Graphs
- ▷ The Erdős–Rényi random graph
- ▷ The phase transition

- ▷ Preliminaries
 - Graphs
- ▷ The Erdős–Rényi random graph
- ▷ The phase transition
- ▷ A version for directed graphs

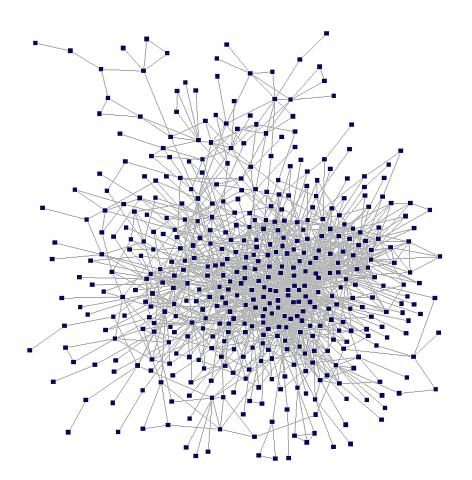
 \triangleright Graph: G = (V, E)

- \triangleright Graph: G = (V, E)
 - V: set of *vertices*

- \triangleright Graph: G = (V, E)
 - V: set of vertices
 - E: set of *edges* (= unordered pairs of vertices)

A graph

A graph



By V. Krebs, from http://www.orgnet.com/Erdos.html

Random graphs

▷ Erdős and Rényi (1959, 1960): systematic study of random graphs.

Erdős and Rényi (1959, 1960): systematic study of random graphs. ER model:

G(n,m) =

Erdős and Rényi (1959, 1960): systematic study of random graphs. ER model:

G(n,m) = G on [n] and m edges, chosen uniformly at random

Erdős and Rényi (1959, 1960): systematic study of random graphs. ER model:

G(n,m) = G on [n] and m edges, chosen uniformly at random

▷ Uniform model on $\binom{\binom{[n]}{2}}{m}$

Erdős and Rényi (1959, 1960): systematic study of random graphs. ER model:

 $G(n,m)=G \mbox{ on } [n]$ and m edges, chosen uniformly at random

- ▷ Uniform model on $\binom{\binom{[n]}{2}}{m}$
- \triangleright G(n,p): binomial variant; $0 \le p = p(n) \le 1$

Theorem 1 (Łuczak (1990), building on Bollobás (1984)). Let $np = 1 + \epsilon$, where $\epsilon = \epsilon(n) \rightarrow 0$ but $n|\epsilon|^3 \rightarrow \infty$, and $k_0 = 2\epsilon^{-2} \log n|\epsilon|^3$.

Theorem 1 (Łuczak (1990), building on Bollobás (1984)). Let $np = 1 + \epsilon$, where $\epsilon = \epsilon(n) \rightarrow 0$ but $n|\epsilon|^3 \rightarrow \infty$, and $k_0 = 2\epsilon^{-2} \log n|\epsilon|^3$.

(i) If $n\epsilon^3 \rightarrow -\infty$, then G(n,p) a.a.s. contains no component of order greater than k_0 . Moreover, a.a.s. each component of G(n,p) is either a tree, or contains precisely one cycle.

Theorem 1 (Łuczak (1990), building on Bollobás (1984)). Let $np = 1 + \epsilon$, where $\epsilon = \epsilon(n) \rightarrow 0$ but $n|\epsilon|^3 \rightarrow \infty$, and $k_0 = 2\epsilon^{-2} \log n|\epsilon|^3$.

- (i) If $n\epsilon^3 \rightarrow -\infty$, then G(n,p) a.a.s. contains no component of order greater than k_0 . Moreover, a.a.s. each component of G(n,p) is either a tree, or contains precisely one cycle.
- (ii) If $n\epsilon^3 \to \infty$, then G(n,p) a.a.s. contains exactly one component of order greater than k_0 . This component a.a.s. has $(2+o(1))\epsilon n$ vertices.

 \triangleright Directed graph: D = (V, E)

- \triangleright Directed graph: D = (V, E)
 - V: set of *vertices*

- \triangleright Directed graph: D = (V, E)
 - V: set of *vertices*
 - E: set of *arcs/directed edges* = ordered pairs of distinct vertices
 - $\circ \ E \subset (V)_2$

- \triangleright Directed graph: D = (V, E)
 - V: set of *vertices*
 - E: set of *arcs/directed edges* = ordered pairs of distinct vertices
 - $\circ \ E \subset (V)_2$
- \triangleright Binomial directed graph: D(n, p)

Theorem 2 (Łuczak and Seierstad (2009); Łuczak (1990); Karp (1990)). Let $np = 1 + \varepsilon$ with $\varepsilon = \varepsilon(n) \rightarrow 0$.

Theorem 2 (Łuczak and Seierstad (2009); Łuczak (1990); Karp (1990)). Let $np = 1 + \varepsilon$ with $\varepsilon = \varepsilon(n) \rightarrow 0$.

(i) If $\varepsilon^3 n \to -\infty$, then a.a.s. every strong component in D(n,p) is either a vertex or a cycle of length $O(1/|\varepsilon|)$.

Theorem 2 (Łuczak and Seierstad (2009); Łuczak (1990); Karp (1990)). Let $np = 1 + \varepsilon$ with $\varepsilon = \varepsilon(n) \rightarrow 0$.

- (i) If $\varepsilon^3 n \to -\infty$, then a.a.s. every strong component in D(n,p) is either a vertex or a cycle of length $O(1/|\varepsilon|)$.
- (ii) If $\varepsilon^3 n \to \infty$, then a.a.s. D(n,p) contains a unique complex component, of order $(4 + o(1))\varepsilon^2 n$, whereas every other strong component is either a vertex or a cycle of length $O(1/\varepsilon)$.