Statistical mechanics as a paradigm for complex systems Motivation, foundations and limitations

Roberto Fernández

Utrecht University and Neuromat

Onthology droplet São Paulo, January 2014

A little history

Target: matter = system with huge number of components Order: Avogadro number

 $6.02 \cdot 10^{23} \sim \#$ molecules in 1 cubic inch of water $\sim 10 \cdot \#$ grains of sand in the Sahara

(c.f. brain = 10^{10} neurons)

Two observational levels:

- ▶ Microscopic: laws followed by the different components
- ▶ Macroscopic: laws followed by "bulk" matter

A little history

Target: matter = system with huge number of components Order: Avogadro number

 $\begin{array}{rcl} 6.02\,\cdot\,10^{23} & \sim & \# \mbox{ molecules in 1 cubic inch of water} \\ & \sim & 10\,\cdot\,\# \mbox{ grains of sand in the Sahara} \end{array}$

(c.f. brain = 10^{10} neurons)

Two observational levels:

- ▶ Microscopic: laws followed by the different components
- ▶ Macroscopic: laws followed by "bulk" matter

A little history

Target: matter = system with huge number of components Order: Avogadro number

$$\begin{array}{rcl} 6.02 \cdot 10^{23} & \sim & \# \text{ molecules in 1 cubic inch of water} \\ & \sim & 10 \, \cdot \, \# \text{ grains of sand in the Sahara} \end{array}$$

(c.f. brain = 10^{10} neurons)

Two observational levels:

- ▶ Microscopic: laws followed by the different components
- ▶ Macroscopic: laws followed by "bulk" matter

Key observations

Complex microscopic laws:

- ▶ Complex interaction processes, in fact not totally known
- ▶ Processes involving a huge number of degrees of freedom

Simple equilibrium macroscopic description:

- Few variables suffice: P, V, T, composition, ...
- ▶ Variables related by a simple equation of state: e.g.

$$PV = nRT$$

Key observations

Complex microscopic laws:

- ▶ Complex interaction processes, in fact not totally known
- ▶ Processes involving a huge number of degrees of freedom

Simple equilibrium macroscopic description:

- ▶ Few variables suffice: P, V, T, composition, ...
- ▶ Variables related by a simple equation of state: e.g.

$$PV = nRT$$

Key observations

Complex microscopic laws:

- ▶ Complex interaction processes, in fact not totally known
- ▶ Processes involving a huge number of degrees of freedom

Simple equilibrium macroscopic description:

- Few variables suffice: P, V, T, composition, ...
- ▶ Variables related by a simple equation of state: e.g.

$$PV = nRT$$

(日) (日) (日) (日) (日) (日) (日) (日)

Key observations

Complex microscopic laws:

- ▶ Complex interaction processes, in fact not totally known
- ▶ Processes involving a huge number of degrees of freedom

Simple equilibrium macroscopic description:

- Few variables suffice: P, V, T, composition, ...
- ▶ Variables related by a simple equation of state: e.g.

$$PV = nRT$$

Macroscopic transformations

Simple and efficient description:

- Two state functions:
 - internal energy
 - ► entropy
 - ▶ By Legendre transform enthalpy, free energy
- Two laws (thermodynamic laws)
 - Conservation of energy (heat = energy)
 - ▶ Non decrease of entropy (closed system)

Macroscopic transformations

Simple and efficient description:

- Two state functions:
 - internal energy
 - entropy
 - ▶ By Legendre transform enthalpy, free energy
- ► Two laws (thermodynamic laws)
 - Conservation of energy (heat = energy)
 - ▶ Non decrease of entropy (closed system)

Macroscopic transformations

Simple and efficient description:

- Two state functions:
 - internal energy
 - entropy
 - ▶ By Legendre transform enthalpy, free energy
- ► Two laws (thermodynamic laws)
 - ► Conservation of energy (heat = energy)
 - ▶ Non decrease of entropy (closed system)

Phase transitions

Dramatic changes at very precise values of P, V, T, \ldots

Different types:

- ▶ *First order:* Coexistence of more than one state (=phases)
- ► Second order: Large fluctuations

Phase transitions

Dramatic changes at very precise values of P, V, T, \ldots Different types:

- ► *First order:* Coexistence of more than one state (=phases)
- ► Second order: Large fluctuations

The challenge

Explain

• Transition complex micro \rightarrow simple macro

- Thermodynamic laws
 - ▶ What is entropy?
 - Transition micro reversibility \rightarrow macro irreversibility
- Phase transitions

The challenge

Explain

- Transition complex micro \rightarrow simple macro
- ▶ Thermodynamic laws
 - What is entropy?
 - ▶ Transition micro reversibility \rightarrow macro irreversibility

The challenge

Explain

- Transition complex micro \rightarrow simple macro
- ▶ Thermodynamic laws
 - What is entropy?
 - ▶ Transition micro reversibility \rightarrow macro irreversibility
- Phase transitions

The tenets

Detailed micro description: unfeasible (too much, too long)

- Microscopic state = probability distribution (measure)
- ▶ Macroscopic simplicity: 0 1 laws, ergodic theory
- ► Entropy?
- Phase transitions?

The tenets

Detailed micro description: unfeasible (too much, too long)

- Microscopic state = probability distribution (measure)
- Macroscopic simplicity: 0 1 laws, ergodic theory
- ► Entropy?
- Phase transitions?

The tenets

Detailed micro description: unfeasible (too much, too long)

- Microscopic state = probability distribution (measure)
- ▶ Macroscopic simplicity: 0 1 laws, ergodic theory
- ► Entropy?
- Phase transitions?

The tenets

Detailed micro description: unfeasible (too much, too long)

- Microscopic state = probability distribution (measure)
- ▶ Macroscopic simplicity: 0 1 laws, ergodic theory
- ► Entropy?
- Phase transitions?

The tenets

Detailed micro description: unfeasible (too much, too long)

- Microscopic state = probability distribution (measure)
- ▶ Macroscopic simplicity: 0 1 laws, ergodic theory
- ► Entropy?
- Phase transitions?

The tenets

Detailed micro description: unfeasible (too much, too long)

- Microscopic state = probability distribution (measure)
- ▶ Macroscopic simplicity: 0 1 laws, ergodic theory
- ► Entropy?
- Phase transitions?

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Which measure?

Boltzmann!

► Closed system:

- equiprobable configurations (respecting conservation laws)
- Explains entropy: Boltzmann formula
- ▶ Small box inside a large closed system (reservoir)
 - probability $\sim e^{-E/2}$
 - T =temperature (fixed by reservoir)
 - \blacktriangleright E = energy = Hamiltonian
 - $\blacktriangleright~E$ must be sum of terms involving few components each

Which measure?

- Closed system:
 - equiprobable configurations (respecting conservation laws)
 - ▶ Explains entropy: Boltzmann formula
- Small box inside a large closed system (reservoir)
 - probability $\sim e^{-E/2}$
 - T =temperature (fixed by reservoir)
 - \triangleright E = energy = Hamiltonian
 - $\blacktriangleright~E$ must be sum of terms involving few components each

Which measure?

- Closed system:
 - equiprobable configurations (respecting conservation laws)
 - ▶ Explains entropy: Boltzmann formula
- ▶ Small box inside a large closed system (reservoir)
 - probability $\sim e^{-E/T}$
 - T =temperature (fixed by reservoir)
 - \blacktriangleright E = energy = Hamiltonian
 - \blacktriangleright E must be sum of terms involving few components each

Which measure?

- Closed system:
 - equiprobable configurations (respecting conservation laws)
 - ▶ Explains entropy: Boltzmann formula
- ▶ Small box inside a large closed system (reservoir)
 - probability $\sim e^{-E/T}$
 - T =temperature (fixed by reservoir)
 - E = energy = Hamiltonian
 - $\blacktriangleright~E$ must be sum of terms involving few components each

Which measure?

- Closed system:
 - equiprobable configurations (respecting conservation laws)
 - ▶ Explains entropy: Boltzmann formula
- ▶ Small box inside a large closed system (reservoir)
 - probability $\sim e^{-E/T}$
 - T =temperature (fixed by reservoir)
 - E = energy = Hamiltonian
 - $\blacktriangleright~E$ must be sum of terms involving few components each

Phase transitions?

To explain phase transitions:

- ▶ Must consider exterior conditions to the box
- ▶ At zero degrees:
 - Exterior ice \rightarrow interior ice
 - \blacktriangleright Exterior liquid water \rightarrow interior liquid water
- ▶ Boltmann prescription + limits with boundary conditions:

Gibbs measures

- First order: Different limits for same E
- ▶ Second order: Limit with large fluctuations

Phase transitions?

To explain phase transitions:

- Must consider exterior conditions to the box
- ▶ At zero degrees:
 - Exterior ice \rightarrow interior ice
 - \blacktriangleright Exterior liquid water \rightarrow interior liquid water
- ▶ Boltmann prescription + limits with boundary conditions:

Gibbs measures

- First order: Different limits for same E
- ▶ Second order: Limit with large fluctuations

Phase transitions?

To explain phase transitions:

- Must consider exterior conditions to the box
- ▶ At zero degrees:
 - Exterior ice \rightarrow interior ice
 - \blacktriangleright Exterior liquid water \rightarrow interior liquid water
- ▶ Boltmann prescription + limits with boundary conditions:

Gibbs measures

- First order: Different limits for same E
- ▶ Second order: Limit with large fluctuations

Phase transitions?

To explain phase transitions:

- Must consider exterior conditions to the box
- ▶ At zero degrees:
 - Exterior ice \rightarrow interior ice
 - \blacktriangleright Exterior liquid water \rightarrow interior liquid water
- ▶ Boltmann prescription + limits with boundary conditions:

Gibbs measures

Phase transitions:

 \blacktriangleright First order: Different limits for same E

▶ Second order: Limit with large fluctuations

Phase transitions?

To explain phase transitions:

- Must consider exterior conditions to the box
- ▶ At zero degrees:
 - Exterior ice \rightarrow interior ice
 - \blacktriangleright Exterior liquid water \rightarrow interior liquid water
- ▶ Boltmann prescription + limits with boundary conditions:

Gibbs measures

- \blacktriangleright First order: Different limits for same E
- ▶ Second order: Limit with large fluctuations

Advantages of Gibbsianness

Gibbs measures explain thermodynamics

Furthermore, they have several mathematical advantages:

- ▶ Parametrized by a few constants (couplings)
- ▶ Lead to well defined entropy and free energy
- Are optimal in a precise sense (variational principle)
- ▶ Complete math theory (large deviations, ergodicity,...)

Advantages of Gibbsianness

Gibbs measures explain thermodynamics

Furthermore, they have several mathematical advantages:

- ▶ Parametrized by a few constants (couplings)
- ▶ Lead to well defined entropy and free energy
- ▶ Are optimal in a precise sense (variational principle)
- ▶ Complete math theory (large deviations, ergodicity,...)

Advantages of Gibbsianness

Gibbs measures explain thermodynamics

Furthermore, they have several mathematical advantages:

- ► Parametrized by a few constants (couplings)
- ▶ Lead to well defined entropy and free energy
- ▶ Are optimal in a precise sense (variational principle)
- ▶ Complete math theory (large deviations, ergodicity,...)

- ▶ Gibbs measures are *designed to describe equilibrium*
- ▶ No guarantee of applicability in evolutions
- ▶ A limit state of an evolution need not be Gibbs
- Gibsianness can be destroyed by
 - Evolutions
 - Change of observational scale
 - Projections
- ▶ The notion of Gibbsianness requires limits
 - Probabilities in finite boxes can always be written as $e^{-E/T}$
 - ▶ Phase transitions not observed unless system huge

- ▶ Gibbs measures are *designed to describe equilibrium*
- ▶ No guarantee of applicability in evolutions
- A limit state of an evolution need not be Gibbs
- ▶ Gibsianness can be destroyed by
 - Evolutions
 - Change of observational scale
 - Projections
- ▶ The notion of Gibbsianness requires limits
 - Probabilities in finite boxes can always be written as $e^{-E/T}$
 - ▶ Phase transitions not observed unless system huge

- ▶ Gibbs measures are *designed to describe equilibrium*
- ▶ No guarantee of applicability in evolutions
- ▶ A limit state of an evolution need not be Gibbs
- Gibsianness can be destroyed by
 - Evolutions
 - Change of observational scale
 - Projections
- ▶ The notion of Gibbsianness requires limits
 - Probabilities in finite boxes can always be written as $e^{-E/T}$
 - ▶ Phase transitions not observed unless system huge

- ▶ Gibbs measures are *designed to describe equilibrium*
- ▶ No guarantee of applicability in evolutions
- ▶ A limit state of an evolution need not be Gibbs
- Gibsianness can be destroyed by
 - Evolutions
 - ▶ Change of observational scale
 - Projections
- ▶ The notion of Gibbsianness requires limits
 - Probabilities in finite boxes can always be written as $e^{-E/T}$
 - ▶ Phase transitions not observed unless system huge

- ▶ Gibbs measures are *designed to describe equilibrium*
- ▶ No guarantee of applicability in evolutions
- A limit state of an evolution need not be Gibbs
- Gibsianness can be destroyed by
 - Evolutions
 - ▶ Change of observational scale
 - Projections
- ▶ The notion of Gibbsianness requires limits
 - Probabilities in finite boxes can always be written as $e^{-E/T}$
 - ▶ Phase transitions not observed unless system huge

- ▶ Gibbs measures are *designed to describe equilibrium*
- ▶ No guarantee of applicability in evolutions
- ▶ A limit state of an evolution need not be Gibbs
- Gibsianness can be destroyed by
 - Evolutions
 - ▶ Change of observational scale
 - Projections
- ▶ The notion of Gibbsianness requires limits
 - ▶ Probabilities in finite boxes can always be written as $e^{-E/T}$
 - ▶ Phase transitions not observed unless system huge

- ▶ Gibbs measures are *designed to describe equilibrium*
- ▶ No guarantee of applicability in evolutions
- ▶ A limit state of an evolution need not be Gibbs
- Gibsianness can be destroyed by
 - Evolutions
 - ▶ Change of observational scale
 - Projections
- ▶ The notion of Gibbsianness requires limits
 - ▶ Probabilities in finite boxes can always be written as $e^{-E/T}$
 - ▶ Phase transitions not observed unless system huge