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Systems of interacting neurons

• Leaky Integrate and fire model with random threshold in high
dimension.

• Infinite system of neurons i ∈ I that interact.

• I countable is the set of neurons.

• The membrane potential process of one neuron accumulates the
stimuli coming from the other neurons. It spikes in a random way
depending on the height of the accumulated potential.

• Once the neuron has spiked, its potential is reset to a resting
potential (here = 0). Then : Restart accumulating potentials
coming from other neurons.

• This is what is called Variable length memory : the memory of
a given neuron goes back in past up to its last spike.
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• Spike trains : for each neuron i ∈ I, we indicate if there is a
spike or not at time t, t ∈ Z.

Xt(i) ∈ {0, 1},Xt(i) = 1⇔ neuron i has a spike at time t .

t is an index of the time window in which we observe the neuron.

(There is a binning procedure involved here that I am not going to
talk about - see later Arnaud Le Ny.)
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The model, time evolution :

• At each time step, conditionally on the past, neurons update
independently from each other.

• The probability that neuron i spikes at time t is a function of
its membrane potential and of the time elapsed since the last
spike of neuron i .

The membrane potential of neuron i is the sum of

1 spikes of other neurons j that occurred since the last spike
time of neuron i before time t → this introduces a variable
memory structure

2 these spikes are weighted by the synaptic weight Wj→i of
neuron j on neuron i

3 they are also weighted by an aging factor which describes the
loss of potential since the appearance of the spike of neuron j
and the present time t.
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The formula for the membrane potential of neuron i at time t :

Ut(i) =
∑
j

Wj→i

t−1∑
s=Lit+1

gj(t − s)Xs(j),

where

Wj→i ∈ R : synaptic weight of neuron j on i .

Supposed to
be a fixed deterministic real number (can be negative, too).

Lit = sup{s < t : Xs(i) = 1} time of the last spike strictly
before time t in neuron i .
Thus : Xt−1(i) = 1 (spike at time t − 1) ⇒ Ut(i) = 0.

gj : N→ R+ describes a leak effect.
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P(i spikes at time t) = Φi (Ut(i) + St(i)),

• Φi spiking rate function of neuron i : this is an increasing
function.

It can have a logistic shape.

12/01/14 13:02Graph of Logistics Curve
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• St(i) can be an external signal.
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P(X9(i) = 1|past)=


φi (0), if Li9 = 8

φi

(∑
j∈I

Wj→i

8∑
s=Li

9+1

gj(t − s)Xs(j)
)
, otherwise

L39 = 8 =⇒ P(X9(3) = 1|past) = φ3(0)

L29 = 7 =⇒ P(X9(2) = 1|past) = φ2(W3→2g3(1))

L19 = 6 =⇒ P(X9(1) = 1|past) = φ1
(
W3→1(g3(1) + g3(2)) +W2→1g2(2)

)
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Comparison with other models

Our model is a generalization of the classical LIF model, with
random thresholds Θt(i), t ∈ Z, i ∈ I which are i.i.d.

φi (Ut(i)) = P(Ut(i) > Θt(i))

is the probability that the membrane potential Ut(i) exceeds the
random threshold Θt(i).

A. Duarte, A. Galves, G. Ost Neural nets
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Comparison with other models

If we choose gj(1) = 1, gj(n) = 0 for all n ≥ 2 and Φi (x) = x , then
our model is (almost) the

Kinouchi-Copelli model with only one refractory period :

• each neuron has two states : passive (0) or active (spiking, 1)

• if j has just spiked, then i has a transition from 0→ 1 with
probability Wj→i .

A. Duarte, A. Galves, G. Ost Neural nets
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About the model

I Introduced in our joint paper with Antonio Galves in 2013.

I The spiking probability of neuron i depends on the activity of
the system since the last spike time.

I The chain (Xt(i))t∈Z is a chain with memory of variable
length.

I The model is a system of interacting chains with memory
of variable length.

A. Duarte, A. Galves, G. Ost Neural nets
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More about the model

Study of the model in continuous time, mean-field
approximation and Propagation of chaos :
De Masi, Galves, L., Presutti (2015), Fournier and L. (2016),
Robert and Touboul (2014), Duarte, Ost and Rodriguez
(2016) for a spatially structured model, Drougoul and Veltz
(2016), Brochini, Costa, Abadi, Roque, Stolfi and Kinouchi
(2016).

Duarte and Ost (2016) : Finite systems of interacting neurons
without external stimulus and with some leak effect stop
spiking ...

Estimation of the spiking rate function : Hodara, Krell, L.
(2016)

A. Duarte, A. Galves, G. Ost Neural nets
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The interaction graph

Neurons who have a direct influence on i are those belonging to

Vi := {j : Wj→i 6= 0} :

Either excitatory : Wj→i > 0.
Or inhibitory : Wj→i < 0.

We can deal with random weights (we have e.g. considered critical
directed Erdös-Rényi graphs in our first paper....

Goal of this talk : Estimate the Interaction neighborhood Vi of a
fixed neuron i− based on an observation of the process in discrete
time [1, . . . , n], within growing spatial windows.
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Estimation procedure

AIM : Estimate Vi !

• Growing sequence of finite windows Fn - centered around site i .

• For a test-raster block w ∈ {0, 1}{−`,...,−1}×Fn\{i} :

N(i ,n)(w , 1) counts the number of occurrences of w followed by a
spike of neuron i in the sample X1(Fn), . . . ,Xn(Fn), when the last
spike of neuron i has occurred `+ 1 time steps before in the past.

Figure: Local past w ∈ {0, 1}{−`,...,−1}×Fn\{i} outside of i with ` = 5
and |Fn| = 7.
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N(1,23)(w , 0) =
n∑

m=3

1{Xm−1
m−2 (1) = 10,Xm−1(Fn \ {1}) = w ,Xm(1) = 0}.
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N(1,23)(w , 1) =
n∑

m=4

1{Xm−1
m−3 (1) = 102,Xm−1

m−2 (Fn \ {1}) = w ,Xm(1) = 1}.
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• Estimated spiking probability p̂(i ,n)(1|w) =
N(i,n)(w ,1)

N(i,n)(w) .

• Test statistics to test the influence of neuron j on neuron i :

∆(i ,n)(j) = max
w ,v :v{j}c=w{j}c

|p̂(i ,n)(1|w)− p̂(i ,n)(1|v)|.

A. Duarte, A. Galves, G. Ost Neural nets
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Definition

For any positive threshold parameter ε > 0, the estimated
interaction neighborhood of neuron i ∈ Fn, at accuracy ε, given
the sample X1(Fn), . . . ,Xn(Fn), is defined as

V̂
(ε)
(i ,n) = {j ∈ Fn \ {i} : ∆(i ,n)(j) > ε}.

A. Duarte, A. Galves, G. Ost Neural nets
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Conditions

1) Spiking rate functions φi are strictly increasing, Lipschitz

|φi (z)− φi (z ′)| ≤ γ|z − z ′|

and bounded from above and below. 2) Uniform summability of
the synaptic weights

r := sup
i

∑
j

|Wj→i | <∞.

3) supi gi (n) <∞ for all n.

A. Duarte, A. Galves, G. Ost Neural nets
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Theorem

Fix i ∈ I and suppose :
I Vi finite and
I |Fn| = o(log n).
Let X1(Fn), . . . ,Xn(Fn) be a sample produced by the stochastic
chain (Xt)t∈Z satisfying our assumptions. Then for εn = O(n−ξ/2),
for some ξ > 0,

V̂
(εn)
(i ,n) = Vi eventually almost surely.

Can be extended to the case when the interaction neighborhood of
i is infinite !

A. Duarte, A. Galves, G. Ost Neural nets
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Remarks

I We are not estimating the weights of interaction, only the
existence or not of interactions. (An oriented graph which is not

weighted ! )

I We are able to estimate the existence of interactions without
assuming the knowledge of the spiking probability functions or
the leak functions.

I We can deal with the case in which the system has several
invariant states.

A. Duarte, A. Galves, G. Ost Neural nets
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Open questions

• Multi-unit recordings of spiking activity show only a picture of a
very tiny part of the brain ...

• What does the observation of a very small part of the net tells us
about the global behavior of the system ?
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• In this talk : estimation of the anatomical graph of interactions
between single neurons.

• What about the graph describing the functional interactions
betweens components or regions of the brain ?

− Usually derived from correlations

− absence of correlations is not equivalent with independence ! ! ! !
(this would only be true for Gaussian systems)

− need : new mathematical definition of functional dependance.

A. Duarte, A. Galves, G. Ost Neural nets
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• Take into account the characteristics of the graph of
interactions (anatomic and/or functional) of the brain.

• Types of graphs that have been considered : critical Erdös-Rényi
random graphs, small world, rich-club networks, ...

• Statistical model selection for systems of spiking neurons with
interaction graphs belonging to one of these classes ?

A. Duarte, A. Galves, G. Ost Neural nets



The interaction graph
Open questions

Study of the relaxation period

• Relaxation period = interval during which the system transits
from an initial condition to an asymptotic state (= stable state).

• Study how the limit law of the last spiking time (which is finite,
see Duarte and Ost (2016)), rescaled by its mean value, depends
on the leak rate for a fixed spiking rate function.

• Is there a notion of criticality as in Kinouchi and Copelli
(Optimal Dynamical Range of Excitable Networks at Criticality,
2006) - and an associated dynamical phase transition ?

A. Duarte, A. Galves, G. Ost Neural nets
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Some literature

Paper is on arXiv :

• Duarte, A., Galves, A., L.E., Ost, G., Estimating the
interaction graph of stochastic neural dynamics. 2016, arXiv.
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Thank you for your attention.
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