# On the CLT in planar oriented percolation NeuroMat Workshop 

Achillefs Tzioufas<br>(Supported by Fapesp)

A. Broadbent and Hammersley (57). Let $\mathscr{G}(\mathscr{L}, \mathbb{B})$ directed graph with vertices

$$
\mathscr{L}=\left\{(x, n) \in \mathbb{Z}^{2}: x+n \in 2 \mathbb{Z} \text { and } n \geq 0\right\}
$$

$2 \mathbb{Z}=\{2 k: k \in \mathbb{Z}\}$, and edges $\mathbb{B}=\{[(x, n),(y, n+1)\rangle:|x-y|=1\}$.
Retaining parameter $p \in(0,1)$. Let $\omega=(\omega(b): b \in \mathbb{B})$ be i.i.d. $\{0,1\}$ r.v.'s: 1 with pr. $p$, and 0 otherwise.

$$
\begin{gathered}
\xi_{n}^{\eta}(\omega)=\{x:(y, 0) \rightarrow(x, n), \text { for some } y \in \eta\}, \eta \subseteq 2 \mathbb{Z} \\
\xi_{n}^{\eta}(x)=1(0) \text { if } x \in \xi_{n}^{\eta}\left(x \notin \xi_{n}^{\eta}\right)
\end{gathered}
$$

where $x \in 2 \mathbb{Z}(n$ even $)$ and $x \in 2 \mathbb{Z}+1(n$ odd $)$.
B. Let $O$ be the origin. The Percolation event

$$
\begin{equation*}
\Omega_{\infty}:=\cap_{n \geq 1} \Omega_{n}=\left\{\left|\xi_{n}^{O}\right| \geq 1, \text { for all } n \geq 1\right\}, \Omega_{n}:=\left\{\left|\xi_{n}^{O}\right| \geq 1\right\} \tag{2}
\end{equation*}
$$

Let in addition $\rho(p)$ be the asymptotic density.

$$
\begin{equation*}
\rho(p)=\mathbb{P}\left(\Omega_{\infty}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\Omega_{n}\right)=. .=\lim _{n \rightarrow \infty} \mathbb{P}\left(\xi_{n}^{2 \mathbb{Z}} \cap\{O\} \neq \emptyset\right) \tag{3}
\end{equation*}
$$

The critical value

$$
\begin{equation*}
p_{c}=\inf \{p: \rho(p)>0\} \tag{4}
\end{equation*}
$$

Harris (78) shows that, if $p>\frac{8}{9}$, then

$$
\inf _{n>0} \frac{\left|\xi_{n}^{O}\right|}{n}>0 \text { a.s. on } \Omega_{\infty}
$$

C. Durrett (80). Let $r_{n}=\sup \xi_{n}^{O}$ and $l_{n}=\inf \xi_{n}^{O}$. If $p>p_{c}$ there is an asymptotic velocity $\alpha=\alpha(p)>0$

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{n}=\lim _{n \rightarrow \infty} \frac{l_{n}}{n}=\alpha \text { a.s. on } \Omega_{\infty}
$$

Clearly

$$
\left|\xi_{n}^{O}\right|=\sum_{x=l_{n}}^{r_{n}} \xi_{n}^{O}(x)
$$

Durrett and Griffeath (83). If $p>p_{c}$, then

$$
\lim _{n \rightarrow \infty} \frac{\sum_{x=l_{n}}^{r_{n}} \xi_{n}^{O}(x)}{n}=\alpha \rho \text { a.s. on } \Omega_{\infty} \quad(*)[\mathrm{LLN}]
$$

*Intuition Durrett (80). If all processes are defined on the same probability space

$$
\begin{equation*}
\left|\xi_{n}^{O}\right|=\sum_{x=\bar{l}_{n}}^{\bar{r}_{n}} 1\left(x \in \xi_{n}^{2 \mathbb{Z}}\right), \text { a.s. on } \Omega_{\infty} \tag{5}
\end{equation*}
$$

D. Let $s_{n}$ be the span of $\xi_{n}^{O} \cap \mathscr{L}$, so $\left|s_{n}\right|=\frac{r_{n}-l_{n}}{2}+1$, and $\lim _{n \rightarrow \infty} \frac{\left|s_{n}\right|}{n}=\alpha$ a.s. on $\Omega_{\infty}$.

Theorem 0.1 (T. (16).). Let $p>p_{c}$ 円 We have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left.\frac{\sum_{x \in s_{n}} \xi_{n}^{O}(x)-\left|s_{n}\right| \rho_{n}}{\sigma \sqrt{\left|s_{n}\right|}} \leq x \right\rvert\, \Omega_{\infty}\right) \rightarrow \int_{-\infty}^{x}(2 \pi)^{-1 / 2} e^{-u^{2} / 2} d u(* *)[C L T] \tag{6}
\end{equation*}
$$

as $n \rightarrow \infty$, where $\sigma^{2}=\sum_{x} \operatorname{Cov}\left(x \in \xi^{\bar{\nu}}, O \in \xi^{\bar{\nu}}\right)<\infty$, and $\xi_{2 n}^{*} \Rightarrow \xi^{\bar{\nu}}$, as $n \rightarrow \infty$.

Ergodic improvement of (*),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sum_{x=l_{n}}^{r_{n}} f\left(\xi_{n}^{O}(x)\right)}{n}=\alpha \mathbb{E} f\left(\xi^{\bar{\nu}}(0)\right) \text { a.s. on } \Omega_{\infty}, \tag{7}
\end{equation*}
$$

for any $f:\{0,1\} \rightarrow[0, \infty)$ such that $\mathbb{E} f\left(\xi^{\bar{\nu}}(0)\right)<\infty$.
E. ${ }^{* *}$ Heuristics [asymptotic independence]

$$
\begin{aligned}
\frac{1}{\sqrt{n}}\left(\left|\xi_{n}^{2 \mathbb{Z}} \cap\left[\bar{l}_{n}, \bar{r}_{n}\right]\left\|-\mid \xi_{n}^{2 \mathbb{Z}} \cap[-\alpha n, \alpha n]\right\|\right)\right. & \approx \frac{1}{\sqrt{n}}\left(\rho_{n} \frac{\bar{r}_{n}-\alpha n}{2}+\rho_{n} \frac{+\alpha n-\bar{l}_{n}}{2}\right) \\
& \Rightarrow 4 \rho N\left(0, \sigma_{\text {edges }}^{2}\right)
\end{aligned}
$$

Turns out that Counter-intuitively (extending Anscombe (52))

$$
\frac{1}{\sqrt{n}}\left|\xi_{n}^{2 \mathbb{Z}} \cap\left[\bar{l}_{n}, \bar{r}_{n}\right]\left\|-\mid \xi_{n}^{2 \mathbb{Z}} \cap[-\alpha n, \alpha n]\right\| \xrightarrow{p} 0 .\right.
$$

[^0]
[^0]:    ${ }^{1}$ Note that, thanks to the work by Bezuidenhoot and Grimmett (90), we know that $\rho\left(p_{c}\right)=0$, and therefore, the assumption $p>p_{c}$ may be replaced by $\rho(p)>0$.

