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Binning Spike Trains of Neurons in Neuroscience

Spike Trains as a Neural Code

Galvani (1791) : Electric nature of nervous signals, responsible of
information transmission in animal life.

Ramon y Cajal (1894) : Identification of the nervous network as an
assembly of cells (neurons) which communicate via
synapses with a special neural interaction process
induced electrically or chemically.

Hodgkin and Huxley (1952) : Neuronal electric signals propagates
via an electrical impulses called action potentials or
spikes.

Spike trains : Succession of spikes emitted by neuron(s), possibly
(presumably !) interacting, considered as a "neural code”
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Binning Spike Trains of Neurons in Neuroscience

Binning and Spike Sorting

@ Multi-electrode arrays (MEA) technology to record the spiking
activity of populations of neurons. For us, each (k) neuron’s
activity is characterized by a binary variables in discrete time.

@ Preliminary specific treatments of MEA data : spike sorting to
distinguish spikes of "different” natures and binning of data :
one defines a time window of ~ 5 — 20 ms (binning window),
larger than the typical duration of a spike (~ 1 — 2 ms), to gather
(possibly sparse) spikes. The whole spike train is then divided
into contiguous, non overlapping windows : for each neuron &
observed at time » a binary variable @, (m(n)) is defined as :

Binned variables : for a (discrete) spike train w

e w(m) = 0 if the neuron k has not spiked in the m™ binning window.
e wi(m) = 1 if the neuron k has spiked at least once in this window.
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Binning Spike Trains of Neurons in Neuroscience

Binning Data of a Spike Train

FIGURE : Binning data of a Spike train
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Binning Data of a Spike Train
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Binning Spike Trains of Neurons in Neuroscience

Binning Data of a Spike Train
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FIGURE : Binning data of a Spike train
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A toy model with N = 1 Neuron

(Reversible) 2-states Markov Chains

Markov chain (X,),cx : (Discrete) stochastic process on {0, 1}V s.t.
(Conditioning) at time n, the future is independent of the past
Stochastic matrix P : P(0,1) =p >0, P(1,0) =g >0
Vn >0, Vx,y=0or 1, PX,1; =yX, =x] = P(x,y)
In our good cases, v on {0,1} s.t. vP=v and e.g. for (0, 1,---,1,1)
P.[Xo=0,Xi =1,..., X1 = 1, X, = 1] = v(0)P(0,1) ... P(-,1)P(1, 1)

Detailled balance :

v(i)P(i.j) = v(j)P(j, 1)
— Reversible Markov chains whose law P,, can be extended to Z.
Markov of order D : similar but memory of order D :

PlXnt1 = x|X<n = x<n] = PXup1 = xa1 | X3 _piy = X5 _pyi]
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A toy model with N = 1 Neuron

A toy model with N = 1 Neuron

N = 1 neuron, (p, g)-Markov spike train (D = 1), "window size” 7 = 2
Original Spike variables : w = (w(0),...,w(n)) of weights P, (w)

Binned variables : for a (discrete) spike train w
@ w(m) = 0 if the neuron has not spiked in the binning window.
@ w(m) = 1 if the neuron has spiked at least once.

Binning transformation 7, : w +— @, P, — pY) (factorisation map)

PO @] =P, [T~ (@)] = P, [{w s.t. Tp(w) = @}]
Important fact : different pre-images
@ w(m) = 0 corresponds to the event (0,0) in the initial train.
@ w(m) = 1 corresponds either to (0,1), (1,0) or (1, 1).
These factorisations can lead to loss of Markov property.
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A toy model with N = 1 Neuron

lllustrative example : p = ¢ = P[0[1] = P[1]0] =

Invariant measure v = (-, -£-) i.e. v(0) = v(1) = 1, but not i.i.d.

D
Claim 1 : The (order 1) Markov property is lost

PP [@(2) = 0jw(1) = 1,(0) = 0] # PO [w(2) = 0fw(1) = 1].
To compute the conditional probabilities, one has to use definition

PO [@G(2) = 0,w(1) = 1]
PO [@(1) = 1]

PO E(2) =0w(1) = 1] =

and apply Markov property to the (different) individual pre-images :

PO wmR) =0, w(1) =1] = Plw() =0,w@) =0,w®) =0,w?) =1] +Pw() =0, w®) =0, w?) =1, w(2) = 0]
4+ Pw®)=0,w() =0,wB) =1,w(2) =1]
and PO [@(1) = 1] = Plw(B3) = 0, w(2) = 1] + Plw(3) = 1, w(2) = 0] + Plw(3) = 1, w(2) = 1].

Key : w(2) depends whether one has 0 or 1 the step before.
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A toy model with N = 1 Neuron

The Binned process as a VLMC

In our numerical example, we (indeed!) get different values

PP [@(2) = 0jw(1) = 1] = 0,1339 # PP [@w(2) = 0jw(1) = 1, @(0) = 0] =0, 1125

In fact, it is the association of 3 symbols of the initial Markov chain to
the same the symbol @ = 1 that can lead to a loss of the Markov
property with the creation of a memory of variable length : For any
binned block ¢ = (w(r),w(r + 1),...,w(s — 1),w(s)) we have

PO [a(s + 1)[w] = PO [w(s + 1)|w]], (1)

where [ is the first occurrence of the symbol 0 when going from s to r.
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A toy model with N = 1 Neuron

Binning Data of a Spike Train

The binned process is thus a Variable Length Markov Chain (VLMC)
or Context Tree Model in the sense of Rissanen, where memory
goes back up to* the first occurrence of a 0 in the past(*and not to
the last spike )

FIGURE : Context Tree for the VLMC (z codes 0, u codes 1)
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Mathematical Results for N neurons

VLMC for N neurons

Spike train : ((w(n)) = (wk(n))kzlmN)nGZ ~ P Markov order D,

Vn € Z, Plw(n+1)|F<,](-) = Plw(n+ 1)|Fp_p](-) P—as.
Supposed to be nice (primitive transition matrix).
Binned raster @ : Partition Z = U,,czFy, Fin = [m7,(m+ 1)7 — 1] N Z.
wr(m) := 1if In € F,,,wi(n) = 1 vs. wr(m) = 0 when Vn € F,,, wi(n) = 0.
For any past @___, the length of the "variable memory” of the binned

law P®) will be again the time required to get in the past the “null”
0 := (0);—...y binned configuration for which no neuron has spiked :
I(@=L)) := inf{m : @(—m) = 0}.

Proposition : Suppose 7 > D. Then for any infinite past @___,

Va=0or 1, PO [w(0) = aw},] = P [w(0) = a\w:}@,l )}.
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Mathematical Results for N neurons

Continuity of the "one-sided” conditional probabilities

It is important that the initial spike train as no "forbidden” transitions :
@ The memory /(@) is variable, unbounded but a.s. finite because :

P®)[3 infinitely windows F,, s.t. @(m) = 0] = 1
@ The binned chains is continuous w.r.t the past, with exponential
continuity rate : 3o = a(N) > 0, so thatas n — oo :

B(n) := sup supsup’P(b)(a|x:,11y:’gl)—ﬂ”( 71 = 1 ’— ( _“")

a=0,1 x y,2

In the context of dynamical systems, such a process is a (particularly
regular) g-measure : a measure consistent with a system of
conditional probabilities with respect to the past ("One-sided”).
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Mathematical Results for N neurons

Gibbs property : 2-sided conditional probabilities

@ Does binning affect anticipation properties ? : In general,
one-sided and two-sided conditionings are not equivalent....

@ Here, starting from a (finite order, primitive) Markov model, the
binned process remains a Gibbs measure : there always exists
a continuous version of two-sided conditional probabilities, i.e.
when conditionning on the past and on the future.

@ For more general models, phase transition might occur and
creates some discontinuous memories. Would they be related to
"spurious phase transitions” that are around spike trains
statistics ? More investigations are needed (long-range models in
dimension one, two-sided Gibbs approach, renormalization
transformations, non-Gibbsian measures, etc.).
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Perspectives

Perspectives

@ What about long-range chains with possible phase transitions ?

@ What about N — 0o ?
Markov chains with denumerable state space could more easily
lead to discontinous g-measures (discontinuous VLMC).

@ Case of forbidden transitions — Non-primitives matrices.

@ Does one can explain “critical effects” or "spurious phase
transitions” by discontinuities (and non-Gibbsianness) by starting
with different spike trains distributions ?

@ What about random graphs/trees ?

Arnaud Le Ny (Paris-Est) A Stochastic Model for Neural Net



Perspectives

Other References

[CGG14] W. de Carvalho, S. Gallo, N. Garcia. J. Appl. Proba. 53(1) :216-230, 2016.
Continuity Properties of a Factor of Markov Chains.

[CGL12] M. Cassandro, A. Galves, E. Lécherbach. J. Stat. Phys. 147 :795-807, 2012.
Partially Observed Markov Random Fields are Variable Neighborhood Random Fields.

[COP09] : M. Cassandro, E. Orlandi, P. Picco. J. Math. Phys. 46, 2009.
Phase Transition in the 1D Random Field Ising Model with Long Range Interaction.

[CU11] J. Chazottes, E. Ugalde. /n Entropy of Hidden Markov Processes, CUP, 2011.
On the preservation of Gibbsianness Under Amalgamation of Symbols.

[ELN16] : A.C.D. van Enter, A. Le Ny. In revision to Stoch. Proc. Appl., 2016.
Decimation of the Dysin-Ising Ferromagnet.

[FP97] R. Fernandez, C. Pfister. Ann. Probab. 25(3) :1284-1315, 1997.
Global specifications and non-quasilocality of projections of Gibbs measures.

[LO11] : E. Lécherbach, E. Orlandi. Stoch. Proc. Appl. 121(9), 2011.
Neighborhood radius estimations for variable-neighborhood random fields.

[RW10] : F. Redig, F. Wang. Markov Proc. Relat. Fields 16, 2010.
Transformations of One-Dimensional Gibbs Measures with Infinite Range Interaction.

[R83] : J. Rissanen. IEEE Trans. Inform. Theory IT 29 :656-664, 1983.
A Universal Data Compression System.

[V11] : E. Verbistkiy. Indagationes Mathematicae 22 :315-329, 2011.
On Factors of g-measures.

A Stochastic Model for Neural Net



	Binning Spike Trains of Neurons in Neuroscience
	A toy model with N=1 Neuron
	Mathematical Results for N neurons
	Perspectives

