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(Laboratoire d’Analyse et de Mathématiques Appliquées, LAMA - UMR CNRS 8050)

2d Neuromat worskhop, New Frontiers in Neuromathematics,
São Paulo, November 23, 2016, 15h40–16h30,

Joint work with B. Cessac and E. Löcherbach
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Spike Trains as a Neural Code

Galvani (1791) : Electric nature of nervous signals, responsible of
information transmission in animal life.

Ramon y Cajal (1894) : Identification of the nervous network as an
assembly of cells (neurons) which communicate via
synapses with a special neural interaction process
induced electrically or chemically.

Hodgkin and Huxley (1952) : Neuronal electric signals propagates
via an electrical impulses called action potentials or
spikes.

Spike trains : Succession of spikes emitted by neuron(s), possibly
(presumably !) interacting, considered as a ”neural code”

Arnaud Le Ny (Paris-Est) A Stochastic Model for Neural Net



Binning Spike Trains of Neurons in Neuroscience
A toy model with N = 1 Neuron

Mathematical Results for N neurons
Perspectives

Binning and Spike Sorting

Multi-electrode arrays (MEA) technology to record the spiking
activity of populations of neurons. For us, each (k) neuron’s
activity is characterized by a binary variables in discrete time.

Preliminary specific treatments of MEA data : spike sorting to
distinguish spikes of ”different” natures and binning of data :
one defines a time window of ∼ 5− 20 ms (binning window),
larger than the typical duration of a spike (∼ 1− 2 ms), to gather
(possibly sparse) spikes. The whole spike train is then divided
into contiguous, non overlapping windows : for each neuron k
observed at time n a binary variable ωk(m(n)) is defined as :

Binned variables : for a (discrete) spike train ω

ωk(m) = 0 if the neuron k has not spiked in the mth binning window.

ωk(m) = 1 if the neuron k has spiked at least once in this window.
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Binning Data of a Spike Train

FIGURE : Binning data of a Spike train
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(Reversible) 2-states Markov Chains
Markov chain (Xn)n∈N : (Discrete) stochastic process on {0, 1}N s.t.

(Conditioning) at time n, the future is independent of the past

Stochastic matrix P : P(0, 1) = p > 0, P(1, 0) = q > 0

∀n ≥ 0, ∀x, y = 0 or 1, P[Xn+1 = y|Xn = x] = P(x, y)

In our good cases, ∃ν on {0, 1} s.t. νP = ν and e.g. for (0, 1, · · · , 1, 1)

Pν [X0 = 0,X1 = 1, . . . ,Xn−1 = 1,Xn = 1] = ν(0)P(0, 1) . . .P(·, 1)P(1, 1)

Detailled balance :
ν(i)P(i, j) = ν(j)P(j, i)

=⇒ Reversible Markov chains whose law Pν can be extended to Z.
Markov of order D : similar but memory of order D :

P[Xn+1 = x|X≤n = x≤n] = P[Xn+1 = xn+1|Xn
n−D+1 = xn

n−D+1]
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A toy model with N = 1 Neuron

N = 1 neuron, (p, q)-Markov spike train (D = 1), ”window size” τ = 2

Original Spike variables : ω = (ω(0), . . . , ω(n)) of weights Pν(ω)

Binned variables : for a (discrete) spike train ω

ω(m) = 0 if the neuron has not spiked in the binning window.
ω(m) = 1 if the neuron has spiked at least once.

Binning transformation Tb : ω 7−→ ω, Pν 7−→ P(b)
ν (factorisation map)

P(b)
ν [ω] = Pν [T−1(ω)] = Pν [{ω s.t. Tb(ω) = ω}]

Important fact : different pre-images
ω(m) = 0 corresponds to the event (0, 0) in the initial train.
ω(m) = 1 corresponds either to (0, 1), (1, 0) or (1, 1).

These factorisations can lead to loss of Markov property.
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Illustrative example : p = q = P[0|1] = P[1|0] = 3
4

Invariant measure ν =
( q

p+q ,
p

p+q

)
i.e. ν(0) = ν(1) = 1

2 , but not i.i.d.

Claim 1 : The (order 1) Markov property is lost

P(b)[ω(2) = 0|ω(1) = 1, ω(0) = 0] 6= P(b)[ω(2) = 0|ω(1) = 1].

To compute the conditional probabilities, one has to use definition

P(b)[ω(2) = 0|ω(1) = 1] =
P(b)[ω(2) = 0, ω(1) = 1]

P(b)[ω(1) = 1]
.

and apply Markov property to the (different) individual pre-images :

P(b)
[ω(2) = 0, ω(1) = 1] = P[ω(5) = 0, ω(4) = 0, ω(3) = 0, ω(2) = 1] + P[ω(5) = 0, ω(4) = 0, ω(3) = 1, ω(2) = 0]

+ P[ω(5) = 0, ω(4) = 0, ω(3) = 1, ω(2) = 1]

and P(b)[ω(1) = 1] = P[ω(3) = 0, ω(2) = 1] + P[ω(3) = 1, ω(2) = 0] + P[ω(3) = 1, ω(2) = 1].

Key : ω(2) depends whether one has 0 or 1 the step before.
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The Binned process as a VLMC

In our numerical example, we (indeed !) get different values

P(b)
ν [ω(2) = 0|ω(1) = 1] = 0, 1339 6= P(b)

ν [ω(2) = 0|ω(1) = 1, ω(0) = 0] = 0, 1125

In fact, it is the association of 3 symbols of the initial Markov chain to
the same the symbol ω = 1 that can lead to a loss of the Markov
property with the creation of a memory of variable length : For any
binned block ωs

r = (ω(r), ω(r + 1), . . . , ω(s− 1), ω(s)) we have

P(b)[ω(s + 1)|ωs
r] = P(b)[ω(s + 1)|ωs

l ], (1)

where l is the first occurrence of the symbol 0 when going from s to r.
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Binning Data of a Spike Train

The binned process is thus a Variable Length Markov Chain (VLMC)
or Context Tree Model in the sense of Rissanen, where memory
goes back up to* the first occurrence of a 0 in the past(*and not to
the last spike !)

uz

uz uu

uuz uuu

FIGURE : Context Tree for the VLMC (z codes 0, u codes 1)
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VLMC for N neurons
Spike train :

(
(ω(n)) = (ωk(n))k=1...N

)
n∈Z ∼ P Markov order D,

∀n ∈ Z, P[ω(n + 1)|F≤n](·) = P[ω(n + 1)|Fn
n−D+1](·) P− a.s.

Supposed to be nice (primitive transition matrix).
Binned raster ω : Partition Z = ∪m∈ZFm, Fm = [mτ, (m + 1)τ − 1] ∩ Z.

ωk(m) := 1 if ∃n ∈ Fm, ωk(n) = 1 vs. ωk(m) = 0 when ∀n ∈ Fm, ωk(n) = 0.

For any past ω−1
−∞, the length of the ”variable memory” of the binned

law P(b) will be again the time required to get in the past the ”null”
0 := (0)k=1...N binned configuration for which no neuron has spiked :

l(ω−1
−∞) := inf{m : ω(−m) = 0}.

Proposition : Suppose τ ≥ D. Then for any infinite past ω−1
−∞,

∀a = 0 or 1, P(b)[ω(0) = a|ω−1
−∞

]
= P(b)[ω(0) = a|ω−1

−l(ω−1
−∞)

]
.
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Continuity of the ”one-sided” conditional probabilities

It is important that the initial spike train as no ”forbidden” transitions :
The memory l(ω) is variable, unbounded but a.s. finite because :

P(b)[∃ infinitely windows Fm s.t. ω(m) = 0] = 1

The binned chains is continuous w.r.t the past, with exponential
continuity rate : ∃α = α(N) > 0, so that as n→∞ :

β(n) := sup
a=0,1

sup
x

sup
y,z

∣∣P(b)(a|x−1
−ny−n−1
−∞ )−P(b)(a|x−1

−nz−n−1
−∞ )

∣∣ = O
(
e−αn).

In the context of dynamical systems, such a process is a (particularly
regular) g-measure : a measure consistent with a system of
conditional probabilities with respect to the past (”One-sided”).
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Gibbs property : 2-sided conditional probabilities

Does binning affect anticipation properties ? : In general,
one-sided and two-sided conditionings are not equivalent....
Here, starting from a (finite order, primitive) Markov model, the
binned process remains a Gibbs measure : there always exists
a continuous version of two-sided conditional probabilities, i.e.
when conditionning on the past and on the future.
For more general models, phase transition might occur and
creates some discontinuous memories. Would they be related to
”spurious phase transitions” that are around spike trains
statistics ? More investigations are needed (long-range models in
dimension one, two-sided Gibbs approach, renormalization
transformations, non-Gibbsian measures, etc.).
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Perspectives

What about long-range chains with possible phase transitions ?

What about N →∞?
Markov chains with denumerable state space could more easily
lead to discontinous g-measures (discontinuous VLMC).

Case of forbidden transitions – Non-primitives matrices.

Does one can explain ”critical effects” or ”spurious phase
transitions” by discontinuities (and non-Gibbsianness) by starting
with different spike trains distributions ?

What about random graphs/trees ?
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