Probabilistic Graphical Models 00	Bayesian Networks	Questions O	References O

Perfect simulation for Bayesian Networks

Andressa Cerqueira and Florencia Leonardi

II NeuroMat Workshop: New Frontiers in Neuromathematics

São Paulo, 22 de Novembro de 2016

伺 ト イ ヨ ト イ ヨ ト

Probabilistic Graphical Models	Bayesian Networks	Questions	References
•••	0000000000	0	0

Probabilistic Graphical Models

- Model: is a representation of our understanding of the world;
- Probabilistic: these models are designed to help us deal with large amounts of uncertainty;
- Graphical: the idea here is to use graphs to allow us to represent complex systems that involve a large number of variables.

Probabilistic Graphical Models	Bayesian Networks	Questions	References
○●	0000000000	0	O

Probabilistic Graphical Models - Example

- Situation: A student who takes a course in the university;
- Variables: the intelligence of the student, the difficulty of the course, the grade of the student, the recommendation letter that the student gets

Probabilistic Graphical Models	Bayesian Networks	Questions	References
⊙●		O	O

Probabilistic Graphical Models - Example

- Situation: A student who takes a course in the university;
- Variables: the intelligence of the student, the difficulty of the course, the grade of the student, the recommendation letter that the student gets

Probabilistic Graphical Models	Bayesian Networks ●0000000000	Questions O	References O

Bayesian Networks

- ▶ P(grade|intelligence, difficulty)
- ▶ $\mathbb{P}(letter|grade)$
- letter and intelligence are conditionally independent given grade;
- letter and difficulty are conditionally independent given grade;
- intelligence and difficulty are called parents of grade;
- grade is called child of intelligence and difficulty.

・ 同 ト ・ ヨ ト ・ ヨ ト

Probabilistic Graphical Models	Bayesian Networks	Questions	References
	000000000	0	0

Bayesian Networks

- ▶ Letter ∈ {excelent, good, regular}
- I want to sample from the variable Letter.

How can I do it?

- * 中 * 4 母 * * き * き * うえの

Probabilistic Graphical Models	Bayesian Networks 00●0000000	Questions 0	References 0

Bayesian Networks

Problem: How do we sample from a variable in a graph with thousands of vertices?

Sampling from all the vertices might be extremely demanding !!!

・ ロ ト ・ 酉 ト ・ 亘 ト ・ 回 ト ・ 回 ト ・ 回 ト

Probabilistic Graphical Models	Bayesian Networks	Questions 0	References 0

 To sample from X₁, we need to know:

•
$$\emptyset$$
, $\{X_2\}$, $\{X_2, X_3\}$

Probabilistic Graphical Models	Bayesian Networks	Questions 0	References O
Probabilistic Graphical Models OO X10 X10 X10 X10 X10 X10 X10 X10	Bayesian Networks 0000●000000	Questions ○ Ø, {X ₂ }, {	$\{X_2, X_3\}$
Perfect simulation for Bayesian Networks	5		/ / / /

Probabilistic Graphical Models	Bayesian Networks	Questions O	References 0

- To sample from X₂, we need to know:
- \emptyset , $\{X_4\}$, $\{X_4, X_5\}$

- ▲日 > ▲国 > ▲目 > ▲目 > の < @

Probabilistic Graphical Models 00	Bayesian Networks 00000000000	Questions O	References 0
Nodelistic Graphical Models	Va Xa Xy Xa	♦ Ø, {X ₄ }, {X ₄	, X ₅ }
Perfect simulation for Bayesian Networks			

Probabilistic Graphical Models	Bayesian Networks	Questions 0	References 0

 To sample from X₃, we need to know:

•
$$\emptyset$$
, $\{X_6\}$, $\{X_6, X_7\}$

・ キャット ・ 日本 ・ 日本 ・ 今日 ト ・ 日本 ・ 今日 ト

Probabilistic Graphical Models 00	Bayesian Networks 0000000●00	Questions 0	References O
	00000000000000000000000000000000000000	► Ø, {X ₆ },	১ {X ₆ , X ₇ } ≅া ই ত্রেল
Perfect simulation for Bayesian Network	(S		

Probabilistic Graphical Models	Bayesian Networks	Questions	References
	00000000●0	O	O

- To sample from X₄, we need to know:
- \emptyset , $\{X_8\}$, $\{X_8, X_9\}$
- To sample from X₆, we need to know:
- \emptyset , $\{X_{12}\}$, $\{X_{12}, X_{13}\}$

(日) (ヨ) (ヨ)

Probabilistic Graphical Models	Bayesian Networks 000000000●	Questions 0	References O

- To sample from X₇, we need to know:
- $\emptyset, \{X_{14}\}, \{X_{14}, X_{15}\}$
- To sample from X₁₄, we need to know:
- $(X_{28}), \{X_{28}\}, \{X_{28}, X_{29}\}$

Probabilistic Graphical Models	Bayesian Networks	Questions	References
	0000000000	•	0

Questions:

- ► How can we define the probability to select a subset of the parents of X₁? P(to choose Ø), P(to choose{X₂}) and P(to choose {X₂, X₃})
- ► How can we define the probability of X₁ given a subset of its parents? P(X₁|Ø), P(X₁|X₂) and P(X₁|X₂, X₃)
- Study conditions to guarantee that the number of steps of the algorithm is sufficiently small.

Probabilistic Graphical Models	Bayesian Networks	Questions 0	References •

References

- Koller, Daphne and Friedman, Nir. Probabilistic graphical models: principles and techniques. MIT press.
- Galves, Antonio, Löcherbach, Eva, & Orlandi, Enza. 2010. Perfect simulation of infinite range Gibbs measures and coupling with their finite range approximations. *Journal of Statistical Physics*, **138**(1-3), 476–495.

Galves, Antonio, Garcia, NL, Löcherbach, E, Orlandi, Enza, et al. 2013.

Kalikow-type decomposition for multicolor infinite range particle systems.

高 と く ヨ と く ヨ と

The Annals of Applied Probability, 23(4), 1629–1659.