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Phenomenon:               Strengthening of the synapses between co-active neurons 
 
This phenomenon is known today as Hebbian plasticity and is a form of Long-Term 
Potentiation (LTP) and of activity-dependent plasticity. Martin et al. (2000) and Neves et 
al. (2008) review some of the experimental evidence showing that the memory attractors 
are formed by means of LTP. 

Models for memory attractors:             Hopfield (1982) proposed a model to study the 
dynamics of attractors and the storage capacity of neural networks by means of the 
Ising model (for review about results from the model see Brunel et al. (2013)). Each 
neuron is represented by a spin whose up and down states correspond to a high and a 
low ring rates, respectively. Then the cell assembly would be represented by the set of 
vertices in the network, the engram by the connectivity matrix and the attractor by the 
stable spin configurations. Hopfield gave a mathematical expression for the connectivity 
matrix that supports a given set of attractors chosen a priori. However, the learning 
phase in which such connectivity is built through synaptic plasticity mechanisms is not 
been considered within its framework.  
 
To the best of our knowledge, analytical results on neural networks with plastic 
synapses where the learning phase is been considered are restricted to models of 
binary neurons with binary synapses. We could not find any analytical result on neural 
networks with non-binary synapses or using the Ising model with plastic interactions in 
the literature. 



Model:               We present a model of a network of binary point neurons also based on 
the Ising model. However, in our case we consider the connections between neurons to 
be plastic so that their strengths change as a result of neural activity. In particular, the 
form of the transitions for the coupling constants resemble a basic Hebbian plasticity rule, 
as described by Gerstner and Kistler (2002). Therefore, it represents a mathematically 
treatable model capable of reproducing several features from learning and memory in 
neural networks. 
 
The model combines the stochastic dynamics of spins on a finite graph together with the 
dynamics of the coupling constants between adjacent sites. The dynamics are described 
by a non-stationary continuous-time Markov process. 



Let 𝐺 =  (𝑉; 𝐸) be a finite undirected graph without 
self-loops. For each vertex 𝑣 ∈ 𝑉 we associate a spin 
𝜎𝑣 ∈ {−1,1} and, for each edge 𝑒 =  (𝑣, 𝑣´) ∈ 𝐸 we 
associate a coupling constant  𝐽𝑒 ≡ 𝐽𝑣𝑣´ ∈ ℤ . These 
constants are often called exchange energy constants. 
Here we will also use the term strength for the coupling 
constants. 

𝜎𝑣 𝜎𝑤 
𝑣 𝑤 

configuration of spins               𝝈 =  𝜎𝑣 , 𝑣 ∈ 𝑉 ∈ {−1,1}𝑉   
configuration of strengths        𝑱 =  𝐽𝑒 , 𝑒 ∈ 𝐸 ∈ ℤ𝑉  
state space 𝒜 is the set of all possible pairs of configurations 
of spins and strengths             𝒜 = {−1,1}𝑉× ℤ𝑉  

𝐽𝑣𝑤 

𝜎𝑣 𝜎𝑤 
𝑣 𝑤 𝐽𝑣𝑤 

The following functions will play a key role 
in further definitions: weight for sign flip   

𝜂𝑣 𝝈, 𝑱 = 𝜎𝑣  𝐽𝑣𝑣´𝜎𝑣´

𝑣´:𝑣´~𝑣

 

𝜎𝑤´ 
𝑤´ 

𝜂𝑣 𝝈, 𝑱 = 𝐽𝑣𝑤𝜎𝑣𝜎𝑤 + 𝐽𝑣𝑤´𝜎𝑣𝜎𝑤´ 

𝐽𝑣𝑤´ 



configuration of spins               𝝈 =  𝜎𝑣 , 𝑣 ∈ 𝑉 ∈ {−1,1}𝑉   
configuration of strengths        𝑱 =  𝐽𝑒 , 𝑒 ∈ 𝐸 ∈ ℤ𝑉  
state space 𝒜 is the set of all possible pairs of configurations 
of spins and strengths             𝒜 = {−1,1}𝑉× ℤ𝑉  

weight for sign flip  

𝜂𝑣 𝝈, 𝑱 = 𝜎𝑣  𝐽𝑣𝑣´𝜎𝑣´

𝑣´:𝑣´~𝑣

 

Transitions rates:       for given state 𝝈, 𝑱 ∈ 𝒜 

spin flip   𝜎𝑣 → −𝜎𝑣  occurs with rate   𝑐𝑣 𝝈, 𝑱 =
1

1+exp (2𝜂𝑣 𝝈,𝑱 )
 

strength change  𝐽𝑣𝑣´ → 𝐽𝑣𝑣´ + 𝜎𝑣𝜎𝑣´  occurs with constant rate 𝜈𝑣𝑣´ 𝝈, 𝑱 ≡ 𝜈 

Continuum time Markov chain:  𝜉 𝑡 = 𝝈(𝑡), 𝑱(𝑡)  
 

Discrete time Markov chain:  𝜉𝑚 = 𝝈 (𝑡), 𝑱 (𝑡)  embedded Markov chain with transitions 

spin flip   𝜎𝑣 → −𝜎𝑣  occurs with probability  
𝑐𝑣 𝝈,𝑱

𝐷 𝝈,𝑱
 

strength change  𝐽𝑣𝑣´ → 𝐽𝑣𝑣´ + 𝜎𝑣𝜎𝑣´  occurs with probability 
𝜈

𝐷 𝝈,𝑱
 where 

𝐷 𝝈, 𝑱 = 𝐸 𝜈 +  𝑐𝑣 𝝈, 𝑱

𝑣∈𝑉

 

for given state 𝝈, 𝑱 ∈ 𝒜  
𝐸 𝜈 < 𝐷 𝝈, 𝑱 ≤ 𝐸 𝜈 + |𝑉| 



Theorem 1: The Markov chain 𝜉𝑚 ( 𝜉 𝑡  ) is transient 



Lyapunov function criteria for transience Fayolle et al. (1995), Menshikov et al. (2017)  
 
 
For a discrete-time Markov chain ℒ = (𝜁𝑚, 𝑚 ∈ ℕ) with state space Σ to be transient it is 
necessary and sufficient that there exists a measurable positive function (the Lyapunov 
function) 𝑓(𝛼), on the state space, 𝛼 ∈ Σ, and a non-empty set 𝐴 ⊂ Σ, such that the 
following inequalities hold true 
 
(L1)  𝔼 𝑓 𝜁𝑚+1 − 𝑓 𝜁𝑚    𝜁𝑚 = 𝛼] ≤ 0, for any 𝛼 ∉ 𝐴, 
(L2)  there exists 𝛼 ∉ 𝐴 such that 𝑓 𝛼 < inf

𝛽∈𝐴
𝑓(𝛽). 

 
Moreover, for any initial  𝛼 ∉ 𝐴 

ℙ 𝜏𝐴 < ∞  𝜁0 = 𝛼) ≤
𝑓(𝛼)

inf
𝛽∈𝐴

𝑓(𝛽)
 



Theorem 1: The Markov chain 𝜉𝑚 ( 𝜉 𝑡  ) is transient. 
 
Proof of Theorem: 

choose 𝑁 such that 𝑒2𝑁𝜈 ≥ |𝑉|(𝑁 + 1) then the Lyapunov function will be defined as 
 

𝑓 𝝈, 𝑱 =

 
1

𝜂𝑣
𝑣∈𝑉

,  if 𝜂𝑣 > 𝑁, for all 𝑣 ∈ 𝑉,

|𝑉|

𝑁
,      otherwise.

 

 
and the set A will be defined as 
 

𝐴 = { 𝝈, 𝑱 ∈ 𝒜:  min
𝑣∈𝑉

𝜂𝑣 𝝈, 𝑱 ≤ 𝑁} 

 
Then (L1) and (L2) hold true 



Theorem 2: ℙ 𝜏 < ∞ = 1 

Let 𝜏 be the freezing time  
𝜏 ≔ max{𝑚 ≥ 1:  𝝈  (𝑚 − 1) ≠ 𝝈  (𝑚)} assuming max{∅} = 0. 



𝜂𝑣 > 𝑁, for all 𝑣 ∈ 𝑉 

𝑓 𝝈, 𝑱 =

 
1

𝜂𝑣
𝑣∈𝑉

,  if 𝜂𝑣 > 𝑁, for all 𝑣 ∈ 𝑉,

|𝑉|

𝑁
,      otherwise.

 

 
the 𝐴 was defined as 
 

𝐴 = { 𝝈, 𝑱 ∈ 𝒜:  min
𝑣∈𝑉

𝜂𝑣 𝝈, 𝑱 ≤ 𝑁} 

𝒜 ∖ 𝐴 

Moreover for any 𝝈, 𝑱 ∈ 𝒜 ∖ 𝐴 
 

ℙ 𝜏𝐴 < ∞  𝜉0 = 𝝈, 𝑱 ) ≤
𝑓 𝝈, 𝑱

inf
𝛽∈𝐴

𝑓 𝛽
=

 𝜂𝑣
−1 𝝈, 𝑱𝑣∈𝑉

𝑉
𝑁

≤
𝑁

min
𝑣∈𝑉

𝜂𝑣 𝝈, 𝑱
≤

𝑁

𝑁 + 1
< 1 

ℙ 𝜏𝐴 = ∞  𝜉0 = 𝝈, 𝑱 ) ≥
1

𝑁 + 1
 

𝑁 

𝑁 

𝜂1 

𝜂2 

Proof of Theorem 2 



𝜂𝑣 > 𝑁, for all 𝑣 ∈ 𝑉 

𝒜 ∖ 𝐴 

𝑁 

𝑁 

𝜂1 

𝜂2 

−|𝑉|/2 

−|𝑉|/2 

𝑠 𝝈, 𝑱 =  𝜂𝑣 𝝈, 𝑱

𝑣∈𝑉

 

If  𝝈, 𝑱  such that 𝜂𝑣 𝝈, 𝑱 < −|𝑉|/2 for some 𝑣 ∈ 𝑉 
𝔼 𝑠 𝜉𝑚+1 − 𝑠 𝜉𝑚    𝜉𝑚 = 𝝈, 𝑱 ] ≥ 1/2  

If  𝝈, 𝑱  such that 𝜂𝑣 𝝈, 𝑱 < 0 then the probability of the spin flip 
𝜂𝑣  → −𝜂𝑣 is at least 1/2𝐷 𝝈, 𝑱 > 1/(2(𝜈 𝐸 + |𝑉|)) 

Let ℬ = 𝝈, 𝑱 : min𝑣∈𝑉 𝜂𝑣 𝝈, 𝑱 < −
𝑉

2
⊂ 𝐴. Thus if initial  𝝈, 𝑱 ∈ ℬ then  

ℙ 𝜏𝒜∖ℬ < ∞ 𝜉0 = 𝝈, 𝑱 = 1  

Proof of Theorem 2 



Theorem 3: As a consequence of Theorem 2, for any 𝑒 ∈ 𝐸 almost surely 

lim
𝑚→∞

𝐽 𝑒(𝑚)

𝑚
=

1

|𝐸|
,  lim

𝑡→∞

𝐽𝑒(𝑡)

𝑡
= 𝜈. 

 



Theorem 4: 𝑗𝑣𝑣´
∞ = 𝜎𝑣

∞𝜎𝑣´
∞ for any  (𝑣, 𝑣´) ∈ 𝐸 
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