Roman Glebov, Carlos Hoppen, Tereza Klimošová, Yoshiharu Kohayakawa, Daniel Král’ and Hong Liu.
A classical theorem of Erdős, Lovász and Spencer asserts that the densities of connected subgraphs in large graphs are independent. We prove an analogue of this theorem for permutations and we then apply the methods used in the proof to give an example of a finitely approximable permutation parameter that is not finitely forcible. The latter answers a question posed by two of the authors and Moreira and Sampaio.
The whole paper is available here.
Share on Twitter Share on FacebookNeuroCineMat |
---|
Featuring this week: |
Newsletter |
---|
Stay informed on our latest news! |
Follow Us on Facebook |
---|