Goalkeeper Game: A New Assessment Tool for Prediction of Gait Performance Under Complex Condition in People With Parkinson's Disease

Rafael B. Stern, Matheus Silva d'Alencar, Yanina L. Uscapi, Marco D. Gubitoso, Antonio C. Roque, André F. Helene and Maria Elisa Pimentel Piemonte

Background: People with Parkinson's disease (PD) display poorer gait performance when walking under complex conditions than under simple conditions. Screening tests that evaluate gait performance changes under complex walking conditions may be valuable tools for early intervention, especially if allowing for massive data collection.

Objectives: To investigate the use of the Goalkeeper Game (GG) to predict impairment in gait performance under complex conditions in people with Parkinson's disease (PPD) and compare its predictive power with the one of the Montreal Cognitive Assessment (MoCA) test.

Methods: 74 PPD (HY stages: 23 in stage 1; 31 in stage 2; 20 in stage 3), without dementia (MoCA cut-off 21), tested in ON period with dopaminergic medication were submitted to single individual cognitive/motor evaluation sessions. MoCA and GG were used to assess cognition, and the dynamic gait index (DGI) test was used to assess gait performance under complex condition. GG test resulted in 9 measures extracted via a statistical model. The predictive power of the GG measures and the MoCA score with respect to gait performance, as assessed by DGI, were compared.

The whole paper is available here.

Featuring this week:

Stay informed on our latest news!

Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog