Hawkes processes with variable length memory and an infinite number of components

Pierre Hodara and Eva Löcherbach

In this paper we propose a model for biological neural nets where the activity of the network is described by Hawkes processes having a variable length memory. The particularity in this paper is that we deal with an infinite number of components. We propose a graphical construction of the process and build, by means of a perfect simulation algorithm, a stationary version of the process. To implement this algorithm, we make use of a Kalikow-type decomposition technique. Two models are described in this paper. In the first model, we associate to each edge of the interaction graph a saturation threshold that controls the influence of a neuron on another. In the second model, we impose a structure on the interaction graph leading to a cascade of spike trains. Such structures, where neurons are divided into layers, can be found in the retina.

The whole paper is available here.

Featuring this week:

Stay informed on our latest news!

Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog