Method to assess the mismatch between the measured and nominal parameters of transcranial magnetic stimulation devices

Zacharias L. R., Peres A. S. C., Souza V. H., Conforto A. B. and Baffa O.
Background
Small variations in TMS parameters, such as pulse frequency and amplitude may elicit distinct neurophysiological responses. Assessing the mismatch between nominal and experimental parameters of TMS stimulators is essential for safe application and comparisons of results across studies.

New method
A search coil was used to assess exactness and precision errors of amplitude and timing parameters such as interstimulus interval, the period of pulse repetition, and intertrain interval of TMS devices. The method was validated using simulated pulses and applied to six commercial stimulators in single-pulse (spTMS), paired-pulse (ppTMS), and repetitive (rTMS) protocols, working at several combinations of intensities and frequencies.

Results
In a simulated signal, the maximum exactness error was 1.7% for spTMS and the maximum precision error 1.9% for ppTMS. Three out of six TMS commercial devices showed exactness and precision errors in spTMS amplitude higher than 5%. Moreover, two devices showed amplitude exactness errors higher than 5% in rTMS with parameters suggested by the manufactures.

Comparison with existing methods
Currently available tools allow characterization of induced electric field intensity and focality, and pulse waveforms of a single TMS pulse. Our method assesses the mismatch between nominal and experimental values in spTMS, ppTMS and rTMS protocols through the exactness and precision errors of amplitude and timing parameters.

Conclusion
This study highlights the importance of evaluating the physical characteristics of TMS devices and protocols, and provides a method for on-site quality assessment of multiple stimulation protocols in clinical and research environments.

The whole paper is available here.

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog