On a toy model of interacting neurons

Nicolas Fournier, Eva Löcherbach

We continue the study of a stochastic system of interacting neurons introduced in De Masi-Galves-Löcherbach-Presutti (2014). The system consists of N neurons, each spiking randomly with rate depending on its membrane potential. At its spiking time, the neuron potential is reset to 0 and all other neurons receive an additional amount 1/N of potential. Moreover, electrical synapses induce a deterministic drift of the system towards its center of mass. We prove propagation of chaos of the system, as N tends to infinity, to a limit nonlinear jumping stochastic differential equation. We consequently improve on the results of De Masi-Galves-Löcherbach-Presutti (2014), since (i) we remove the compact support condition on the initial datum, (ii) we get a rate of convergence in 1/sqrt(N). Finally, we study the limit equation: we describe the shape of its time-marginals, we prove the existence of a unique non-trivial invariant distribution, we show that the trivial invariant distribution is not attractive, and in a special case, we establish the convergence to equilibrium.

The whole paper is available here.

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog