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2.1 Description of the scientific and technological issues to be addressed 

The fast evolution of neuroscience is producing huge masses of data and a host of new                

phenomena revealed by novel experiments and interventions. This progress, however, is           

not accompanied by similar advances in theoretical understanding. The resulting          

situation has been nicely described as data-rich yet theory-poor in the home page of the               

Redwood Center for Theoretical Neuroscience. Mathematics is indispensable to break this           

imbalance. 

A first scientific challenge is posed by the complexity of the databases. Current             

mathematical tools are insufficient for its size and high dimensionality. New procedures            

must be devised that are both statistically accurate and computationally feasible. 

However, a second, deeper challenge arises from the apparent randomness displayed by            

neuronal data. As stated in a recent publication: 

Experimental data suggests that neurons, synapses and neural systems are inherently           

stochastic [ . . . ]. In fact, several experimental studies arrive at the conclusion that                

external stimuli only modulate the highly stochastic spontaneous firing activity of cortical            

networks of neurons [ . . . ]. Furthermore, traditional models for neural computation              

have ben challenged by the fact that typical sensory data from the environment is often               

noisy and ambiguous, hence requiring neural systems to take uncertainty about external            

inputs into account. (Buesing et al., 2011). 

 

The mathematical description and treatment of neural phenomena requires, thus, a           

probabilistic setup. Furthermore, neural data are collected at very different scales —from            

unitary recordings to mesoscopic brain regions to behavioral measurements. The          

stochastic framework must, therefore, be able to integrate data of very different nature             

and provide mechanisms to pass information from one scale to the next. 

A striking illustration of all these features is the phenomenon of neural plasticity. This is               

the ability of the nervous system to respond to intrinsic and extrinsic stimuli by              

reorganizing its structure, function and connections (Cramer et al., 2011). It is a crucial              

feature, responsible of processes such as learning and memory, which drives the            

response of the nervous systems to illness and injury. Plasticity phenomena have already             

been extensively documented at the molecular, synaptic, cellular, network, and systems           

levels (Cramer et al., 2011). However, as stated in Nudo (2006), 

While these new findings in the past 20 years have been exciting, these events still               

represent little more than correlative phenomenology, at least with respect to           

understanding how the brain recovers function after injury. 

 



A new, solid theoretical approach is obviously needed. Such an approach could help             

distinguish between normal and altered neural dynamics and lead to a deeper            

understanding of the mechanisms underlying neurorehabilitation. Advancement in this         

direction might guide the development of novel interventions. The new understanding           

and techniques generated by the Center should also contribute to the analysis of altered              

neural states deriving from brain injury. 

The general goal of the proposed Center is the development of a mathematical             

framework for neuroscience, based on the premise that neural states are probability            

measures in suitable measure spaces. This identification, which applies at all scales or             

levels of study, is the key for the theoretical analysis of neural phenomena and, in               

particular, for the development of the new statistical and computational tools needed to             

treat neural data. This probabilistic framework must be constructed so as to fulfill a              

number of requirements: 

1. It must rely on all relevant areas of mathematics. It must involve, not only              

researchers in probability and statistics, but also specialists in other areas           

such as combinatorics, graph theory, rigorous statistical mechanics and         

development and analysis of algorithms. 

2. It must lead to models helping to understand the actual phenomena, and not             

just to convenient phenomenological descriptions. This type of descriptions         

—obtained through the combination of high computational power and         

standard statistical techniques— is clearly insufficient to tackle the complexity          

of the phenomena. The understanding of neural phenomena is much more           

than the application of data-mining techniques. Careful mathematical        

analysis, developed in collaboration with neuroscientists, is needed. 

3. It must rely on original lines of attack, tailored to neural phenomena.            

Previous attempts to mathematically model this phenomena —some of them          

by well known mathematicians— relied instead on importing known stochastic          

approaches, mainly from statistical mechanics. This strategy has been shown          

to be inadequate and did not produce significant contributions to the field            

(see comments by Friston et al., 2010; Truccolo, Hochberg and Donoghue,           

2010; Cessac, 2011). New mathematical paradigms must be devised. 

4. It must lead to efficient algorithms and procedures that can be put to use and               

confronted with data. These algorithms will be the result of the new            

probabilistic models and statistical procedures developed in the Center. To          

this end, the Center will foster the combined effort of probabilists,           

statisticians, computer scientists, rehabilitation clinicians and neuroscientists. 

5. It must be subjected to frequent and merciless testing against experimental           

information. Hence, the NeuroMat Center will associate mathematicians with         

experimental neuroscientists and physicians. 

The new mathematics will be applied to neural phenomena at the frontier of current              

research. The NeuroMat project aims to achieve what previous approaches —data mining            

and naive mathematical adaptation of existing paradigms— failed to accomplish. It will            

rely on the extensive experience of many of its members on the rigorous treatment of               

other complex human phenomena, such as language acquisition and change (see, e.g.,            

Galves et al., 2012). 



The following quote, from the acceptance speech of the illustrious mathematician Mikhael            

Gromov for the 1999 Balzan price, summarizes, in fact the mission of the Center: 

The task of mathematics and mathematicians is to articulate the visible regularities in             

the physical and mental worlds, and to find new structural patterns that can not be               

perceived by direct intuition and common sense. 

To develop the mathematics needed to find regularities, patterns and laws in neural             

phenomena is the mission of NeuroMat. 

 

2.2 How the scientific activities of the Center relate to the state of the art 

NeuroMat is designed to be at the scientific level of the major institutes on theoretical               

neuroscience being created in different countries as a response to the importance and             

timeliness of the topic. Following the international pattern, NeuroMat, while being a            

mathematics institute, has a definite interdisciplinary character, bringing together         

mathematicians, computer scientists, neuroscientists and rehabilitation clinicians to        

handle mathematical theory, neural questions and experimental data in an integrated           

fashion. Through this combined approach the Center will address frontier issues in neural             

research with the aim of obtaining significant advances. 

While Brazil has many excellent groups collecting neural data and performing daring            

experiments and interventions, no institute for theoretical neuroscience has yet been           

proposed. This Center is, therefore, a natural addition to the Brazilian scientific scenario             

aimed at correcting this imbalance. Its creation is fostered by the fortunate fact that the               

State of São Paulo counts with a group of researchers specially qualified for the task. 

Indeed, the team of mathematicians at the origin of the proposal has recognized             

expertise in the required mathematical ingredients —probability and statistics,         

mathematical statistical mechanics, analysis of algorithms and combinatorics, — and          

extensive experience in interdisciplinary studies, including theoretical and experimental         

work in linguistics. Their proficiency has been recognized through many State, Federal            

and Binational grants —including a prestigious USP research grants (Mathematics,          

Computation, Language and the Brain, R$ 1.998.000,00), and by the large number of             

distinguished international researchers taking part in their projects. The team is at the             

origin of the Núcleo de Modelagem Estocástica e Complexidade (NUMEC) hosted by the             

Universidade de São Paulo. This center has completed almost ten years of intense             

activity in the study of stochastic collective phenomena, leading to a solid and original              

scientific production, to the trining of young researchers and to a extended network of              

international connections. For the present project, this mathematic team is associated           

with a group of neurobiologists and rehabilitation clinicians, themselves recently          

rewarded with an important USP research grant (New Approaches in Brain Injury            

Rehabilitation: Development and Assessment, approx. R$ 900.000,00). 

 

2.3 How the strategy of the Center will impact in a significative way the domain 

of research 

The strategy of the Center is to use all the power of rigorous mathematics to address in                 

an innovative way central issues in neuroscience: the ubiquituous phenomena of           



neuroplasticity, learning processes, motor planning and memory consolidation. Advances         

in these issues will have a major impact in neuroscience, and, at the same time, help                

create a new mathematical area in the interface of probability theory, combinatorics and             

statistics. 

Neural phenomena involve activity at micro, meso and macro levels. Surprisingly, while            

at micro and meso levels these phenomena seem to display an inherent randomness,             

many macro phenomena are fundamentally predictable. To reconcile this apparent          

contradiction and to achieve an insightful formulation of the phenomena, the Center            

proposes a novel probabilistic framework based on the premise that neural dynamics can             

be described, at all scales, by stochastic processes taking values in suitable configuration             

spaces. This provides a uniform framework for the simultaneous consideration of the            

different scales and the connections between them. Such an approach should provide a             

two-way link between neuronal activity and animal behavior. 

This link, however, has to be properly understood. Indeed, experiments show that in             

general a given animal behavior does not correspond to an unique realization of neuronal              

activity. The conjecture put forward by the Center, instead, is that each type of animal               

behavior relates to a specific probability distribution on the set of neural activity             

realizations. These realizations are defined not only by the ensemble of spike trains but              

also by the time evolving functional interactions. 

A probabilistic —statistical-mechanics inspired— approach was first proposed in the          

eighties by a number of well known mathematicians. The approach did not have a lasting               

influence in neuroscience, probably because it was based on the direct importation of             

statistical mechanical ideas without adequate data to confront the proposed stochastic           

multi-component models. Data has become plentiful since then, due to the development            

of techniques for simultaneous recording at different levels, e.g. multi-unitary recording,           

optical imaging techniques, fMRI and multi-channel EEG. 

The treatment of these new data posed a major scientific challenge that was initially met               

through the combined use of large computer resources and descriptive statistics. At the             

same time, the new field of computational neuroscience was created (see, e.g., the             

references in http://bluebrain.epfl.ch/), devoted to numerical simulation of systems         

comprising very large neuronal populations, starting from detailed modeling of individual           

neurons and conductances. Understandably, this intensive computational approach has         

intrinsic limitations to reproduce complex phenomena at the level of physiology and            

behavior. More importantly, this approach does not lead to a parsimonious           

understanding of the fundamental mechanisms underlying the functions of the nervous           

system at different scales. 

As an alternative, in recent years, there is a growing interest in the development of               

probabilistic models (Deco, Rolls and Romo, 2009; Harrison, David and Friston, 2005;            

Toyoizumi, Rad and Paninski, 2009; Cessac, 2011; Stevenson and Kording, 2011). This            

recent approach has the advantage of taking into account part of the available             

knowledge in neural system to construct parsimonious probabilistic models. This is an            

important advantage in comparison with the above described two approaches. However,           

until now many of this probabilistic oriented research suffers from two opposite            

limitations. Either they provide a rigorous mathematical description of some specific           

models, but without confronting them with experimental data set (see for instance            

Cessac, 2011). Or, they use some specific models to interpret experimental data, but             

without a systematic effort to study the mathematical properties of the models            

http://bluebrain.epfl.ch/


(Toyoizumi et al., 2009; Harrison et al., 2005), which only analyzed through numerical             

simulations. The Center will overcome these limitations and build a bridge between the             

mathematical theory and statistical analysis of experimental data. 

The probabilistic approach proposed by the Center has the potential of leading to             

significant advances, for three reasons: (i) the lessons learnt from previous failed            

attempts, (ii) the existence of massive databases, and (iii) the availability of new             

mathematical objects supported by a solid probabilistic theory. Members of the Center            

are, in fact, well known specialists, and even pioneers of the theory of these objects               

—context-tree models, new random graph categories, new model-selection procedures.         

Furthermore, the Center will be in conditions to generate large quantities of new             

experimental data to validate the approaches proposed. This combination of          

mathematical novelty and experimental design, together with the recognized scientific          

stature of the Center researchers should lead to significant contributions in the domain. 

 

2.4 Scientific mission and the reasons for a Research, Innovation and 

Dissemination Center on Neuromathematics 

The mission of the Center is to develop the new mathematics which is deemed necessary               

to account for a Theory of the Brain, accounting for the full experimental data gathered               

by neuroscience research. The long-term objective is to understand and explain complex            

neuroscientific phenomena, with focus on plasticity mechanisms underlying learning and          

memory, neurorehabilitation and adapted rewiring. This Neuromathematics is        

envisioned, at this time, as conjoining probability theory, combinatorics, statistics, and           

neuroscience. This requires the definition of a full new class of mathematical models to              

describe and explain in a parsimonious way the different scales of neural activity and the               

relationship between them. The construction of these models should occur together with            

the development of suitable statistical and computational methods, including model          

selection principles and results. 

To fully achieve this mission, the Center will foster a new generation of             

neuromathematical researchers, uniquely equipped with mathematical, statistical and        

computational skills and access to extensive primary experimental data sets, enabled to            

propel a true breakthrough in this frontier of science. This will be achieved by articulated               

actions spanning the entire range of academic levels, from undergraduate and graduate            

students, through post-doc fellows, visiting scholars and resident faculty. The          

overarching goals of the Center are necessarily long-term and will require several years             

to fully blossom, since a novel and deep mathematical theory cannot be developed in a               

small amount of time. 

Besides the long amount of time which is required to fully develop the NeuroMat              

scientific project, a new kind of organizational structure is needed, with no wall             

separating researchers from different scientific domains, different departments and even          

different universities. This is precisely the kind of structure provided by FAPESP proposal             

of Centers of Research, Innovation and Dissemination. This new NeuroMat center will be             

the ideal venue for a collaborative effort involving USP projects MaCLinC and NEAR             

together with Lucy Montoro Rehabilitation Center (São Paulo State), the Laboratory of            

Neurobiology II of the Biophysics Institute at UFRJ (Rio de Janeiro), the Brain Institute at               

UFRN (Natal) and CNRS’s Center of Cognitive Neuroscience (Lyon, France), together with            



an international team of top-level researchers coming from the different scientific           

domains involved in the NeuroMat project. 

This effort will produce not only new scientific results in the frontier between             

mathematics and neuroscience, but will also train a new generation of researches able to              

do original research in this frontier. The project team has a long tradition on teamwork               

and training of productive, highly skilled human resources. 

 

2.5 Vision of the Center 

The center proposed here involves an interdisciplinary (and international) team of           

researchers and a selection of topics determined so as to guarantee two conditions: first,              

that the resulting theoretical work satisfy the four requirements listed above, and,            

second, that the research plan be realistic and reasonable given the NUMEC experience             

and the combined expertise of the team. 

Understanding how animal behavior emerges from the interaction between neurons and           

between ensembles of neurons is one of the most important questions in modern             

neuroscience. It turns out that the mathematical models and tools developed by our             

team to study linguistic phenomena are natural candidates to approach this issue.            

Mathematically speaking, both linguistic and neuroscience models involve probability         

measures defined through graphs. In linguistics these are context trees retrieving           

linguistic dependencies. In neuroscience, models involve more complex graphs         

describing interacting neurons or clusters of neurons. The team’s results on model            

selection — both for context tree models and for random fields supported by interaction              

graphs— are among the most advanced results available in this direction. 

On the practical side, neuroscience theories cannot be developed without sufficient           

empirical validation. For this, the project has access to a large database, collected over a               

period of ten years by Sidarta Ribeiro, one of the founders of the International Institute               

of Neuroscience (IINN-ELS) in Natal, and a member of the team. 

The proposed team undoubtedly measures up to the magnitude of the task. It is formed               

by first-level mathematicians working in probability, statistics, control and optimization,          

combinatorics and graph theory, well known mathematical physicists, computer         

scientists, engineers and a group of leading linguists. The members of the team             

belonging to the USP come from the Departments of Statistics and of Computer Science              

(IME-USP), the Department of General Physics (IF-USP), the Departments of Linguistics           

and of Classical and Vernacular Languages (FFLCH-USP) and the Department of           

Telecommunication Engineering and Control (EP-USP). The non-USP members include         

mathematicians, linguists and researchers in bioinformatics from the UFABC, UNICAMP          

and IMPA, a neuroscientist of the IINN-ELS in Natal and a large number of scientists               

from important foreign institutions (including the universities of Amiens, Buenos Aires,           

Cambridge, Cergy-Pontoise, Harvard, Princeton, Purdue, Roma La Sapienza and Utrecht,          

together with CNRS, Ecole Polytechnique Palaiseau and IBM). 

 

2.6 Main scientific challenges and expected scientific discoveries 



Until recently, the dominant paradigm in Neuroscience was to measure the activity of a              

single neuron or a brain area to correlate it with the animal behavior (Nicolelis and               

Ribeiro, 2006). The new technological progress through optical and chronic multi unit            

recording (Brown, Kaas and Mitra, 2004; Nicolelis and Ribeiro, 2006; Li et al., 2010;              

Takahashi et al., 2010) enables us to record the activity of thousands of neurons              

simultaneously for a period of days. Also, the progress of fMRI (functional magnetic             

resonance imaging) allows to record the global activity of whole brain for hours             

(Logothetis, 2007). The analysis of these data sets require the development of new             

statistical and computational paradigms. The probabilistic modeling of the brain activity           

is the natural approach to this problem, where the interactions between large numbers             

of neurons and brain regions can be described. These models must describe the fact that               

the interaction between neurons depends on the state of neuronal activation itself, and             

they are outside the scope of classical statistical mechanics. The analysis of these             

models requires new statistical tools beyond the existing multivariate methods. The           

mathematics necessary for this modeling, whose development is just beginning, is in the             

forefront of our research. 

Neuromathematics The mathematical approach of the NeuroMat project is based on           

the premise that neural activity can be described as a probability measure on the              

space-time configurations of spike trains and neuronal interaction graphs. Such a           

measure can be called a neural state. Equivalently, a neural state is a non-stationary              

stochastic process, describing simultaneously the spike trains and the complex network           

of interactions between neurons. This stochastic approach provides economic         

explanations to well established experimental facts. For instance, this stochastic          

framework models in a natural way the observation that the same motor performance             

may activate different configurations of neurons every time it is repeated. 

Previous mathematical modeling attempts in neuroscience involved Gibbsian (Newman,         

1988) or Markovian descriptions that were shown to be inadequate (Friston et al., 2010;              

Truccolo et al., 2010; Cessac, 2011). Indeed, aging implies that the time between spikes              

is not exponentially distributed, and the firing time depends on the activity of neurons on               

a neighborhood that itself is a function of the collective configuration of the spike trains.               

This type of interaction does not correspond to a Gibbsian description. Furthermore, the             

connections between neurons define interaction graphs which experimentally are seen to           

be sparse and probably locally different from the tree graphs widely used in             

bioinformatics. New algorithms are needed to build and study the sparse locally non-tree             

interaction graphs. 

The new approach proposed by the NeuroMat project involves continuous-time versions           

of chains with variable-length memory and variable-range interactions. These         

approaches are non-trivial extensions of both the Markov interacting particle systems           

introduced by Spitzer (1970) and of the variable length chains introduced by Rissanen             

(1983). They are inherently non-stationary in time and non-homogeneous in space. They            

represent a stochastic dynamics that change in response to external stimulia succession            

of samples produced by a random source - and also to internal stimuli by a procedure                

which is reminiscent of statistical model selection. In a different time scale, and making              

all the necessary adaptations, first language acquisition by a new born baby can also be               

described in this way. 

Neural data set and modeling The analysis of neural data sets requires new statistical              

and computational schemes. On one hand, existing multivariate methods are largely           

insufficient and new statistical tools are needed to describe these readings. On the other              



hand, new mathematical models are needed to understand and interpret the           

observations. Probabilistic models describing interactions between large number of         

neurons and between brain regions offer a promising direction. Detailed data on brain             

activity are becoming available as a result of recent technological progress. For instance,             

optical and chronic multi-unit recording (Brown et al., 2004; Ikegaya et al., 2005;             

Nicolelis and Ribeiro, 2006; Takahashi et al., 2010) allows to record the activity of              

thousands of neurons simultaneously for a period of days. Also, fMRI (functional            

Magnetic Resonance Imaging) yields records of the global activity of the whole brain for              

hours (Logothetis, 2007). 

In humans, the most common methods used to index neural state dynamics are based              

on electro-physiological [electroencephalograpy (EEG), magnetoencephalography (MEG),      

event related potentials (ERP) Transcranial Magnetic Stimulation (TMS)], as well as           

neuroimaging [fMRI, Magnetic Resonance (MRS), Near Infrared Sopectroscopy (NIRS),         

Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography         

(SPECT)] measurements. While the temporal and spatial resolution of these methods are            

different, all of them have relatively low spatial resolution; they usually index activity at              

the network level. Because of their non-invasive nature, they are often associated with             

significant variability and low precision. Invasive methods to index neural organization in            

humans such as electrocorticography are also unable to index activity at neuronal level. 

Overall, however, the limitations and strengths of these techniques are different, hence            

they should be used in a complementary fashion. For instance, fMRI is a suitable              

complement for MEG and EEG. The former provides relatively reasonable spatial           

resolution of head and brain anatomy, while the latter provide excellent temporal            

resolution. Most studies, however, rely on a single technique or in separate            

interpretations of results whenever multiple techniques are used. NeuroMat aims to           

develop mathematical methods to extract combined information provided by these          

methods when used simultaneously. 

Mathematics, plasticity and neurorehabilitation One of the most influential         

concepts that emerged in the 20th century in the domain of neuroscience refers to the               

brain’s capacity of constant remodeling. It was long believed that the synaptic networks,             

and consequently, the functional organization of the brain, were hard wired from birth             

and could not change during adult life. This view was first challenged by Donald Hebb               

(1949) who suggested that synapses were continuously remodeled by experience. 

Contemporary research has shown that throughout an individual’s life, dendrites and           

spines branches and proliferates, novel synapses are formed, some of them degenerate,            

and the efficacy of synaptic contacts is modulated within a complex network of             

connections (Buonomano and Merzenich, 1998; Nudo, 2003). The term plasticity was           

first coined to refer to the brain’s capacity for such changes (review in Kaas, 1983),               

occurring not only during development but also as a consequence of learning and             

memory, in response to disease, or as a response to therapy (Cramer et al., 2011). Such                

plasticity can be viewed as adaptive when associated with improvement of functions            

(Cohen et al., 1997) or as maladaptive when associated with negative consequences            

such as loss of function or increased injury (Nudo, 2006). Therefore, mathematical            

models are needed also to encompass dynamic alterations associated with plasticity that            

may vary according to the post-injury phase. 

Post-injury plasticity has not only been extensively documented at the molecular,           

synaptic, cellular, network, and systems levels in experimental animals, but many of            



these events have been correlated with alterations in cortical function with the use of              

various neuroimaging and stimulation techniques in humans. The state of art in the field              

of post-injury plasticity is still at a phenomenological stage (Nudo, 2003). Furthermore,            

compelling evidence from large studies involving clinical trials to reveal clinically relevant            

plasticity is still needed. From the clinical point of view, the fundamental need in              

harnessing neuroplasticity is to reliably demonstrate behavioral improvements in human          

populations through the validation of prognostic indicators and the identification markers           

of efficacy to assist clinical trials (Cramer et al., 2011). Advancements in this direction              

will also guide development of novel interventions. 

Neurological damage, and stroke in particular, is one of the leading causes for long term               

disability worldwide. There is growing interest in the role that central nervous system             

reorganization plays in recovery of function. Understanding how these changes are           

related to functional recovery will facilitate the development of novel therapeutic           

techniques that are based on neurobiological principles and that are designed to            

minimize impairments in appropriately targeted patients suffering from stroke (Ward,          

2005). 

The comparison between normal and altered brain states has been limited by the poor              

information about the connectivity between neurons and brain areas. It must be made             

on the basis of the measured neuronal activity patterns of individual neurons and/or the              

whole network (Park and Terman, 2010). The probabilistic models proposed above are            

general enough to provide a sound mathematical framework for the required           

comparison. Its statistical analysis, however, is complicated by their non-Markovian          

character and the fact that the interaction between neurons depends on the activity of              

the neurons themselves. This statistical analysis must be accompanied by extensive           

processing of experimental data. This combination of mathematical modeling with          

statistical and experimental validation is precisely the type of study to which the present              

proposal is geared. 

Identification of altered states is only the first step. Functional recovery must follow.             

Mathematical modeling is increasingly being used both in animals and humans to predict             

clinical outcomes (Ring et al., 1999) and to develop novel therapeutic tools. Neuronal             

activity of groups of neurons may help to identify patients who will respond to              

rehabilitation and have functional recovery potential. Therefore, the appropriate         

treatment of this mathematical information will be of great importance in clinical            

practice. The sophisticated probabilistic models proposed in this project should lead to            

better predictions on the functional recovery and learning abilities in stroke patients. To             

validate these predictions the project will build a large database using data from patients              

from the Net of Rehabilitation Hospitals of the Lucy Montoro Rehabilitation Institute, and             

a mobile unit especially designed to collect data from remote sites. Predictions derived             

from the mathematical models will be used to standardize rehabilitation treatment for            

stroke patients, to identify predictors of response and likelihood of response, and also to              

develop novel interventions to enhance functional recovery after stroke. 

Memory A number of studies indicate that, during sleep, important neurophysiological           

process related to the consolidation and reorganization of memory take place. Since            

1989, several groups have suggested that the reactivation of patterns of neural activity             

observed in awakeness during the slow wave (SW) and rapid-eye-movement (REM)           

sleeps (Ribeiro et al., 2004; Hirase et al., 2001; Dragoi and Tonegawa, 2011) can be               



interpreted as evidence for the reproduction of the information acquired during           

awakeness (Ribeiro and Nicolelis, 2004). 

To verify this conjecture, it is necessary to compare the neural activity during             

awakeness, SW and REM. The main difficulty is that only part of the activity is observed                

and no direct information about the connectivity between neurons is usually available. To             

make the task even more difficult, the interaction between neurons could depend on the              

activity of neurons itself. To overcome these difficulties, a first step was given by Galves               

et al. (2010) and Lerasle and Takahashi (2011). In these works it is assumed that the                

interactions do not depend on the activity of neurons, which simplifies the analysis. 

The next step will be to allow the interactions to depend on the state of activity,                

generalizing the chains of variable length introduced by Rissanen (1983). For this, new             

mathematical and statistical theories of stochastic systems with variable length          

interactions must be developed. Also, these problems involve hard combinatorial and           

computation problems. 

Besides the mathematical, statistical, and computational development, an adequate         

structure for neural data analysis will be necessary to apply these methods in practice.              

For this, a new Data Analysis Laboratory will be implemented, which will considerably             

enhance the quality and quantity of statistical analysis of scientific data developed by the              

team. 

As a starting point, electrophysiological recordings from the cerebral cortex and           

hippocampus of adult rats will be used. The animals were recorded for several hours,              

such that the complete awake-sleep cycles were observed. The recording corresponds to            

three different conditions: before, during, and after the tactile experience with four new             

objects. Published results using this data set indicate that the average spiking rate is              

enhanced during sleep after the novel tactile experience (Ribeiro and Nicolelis, 2004).            

The statistical methods developed by NUMEC will be used to elucidate the dynamics of              

neuronal interaction during different awake-sleep states in different conditions. 

 

2.7 Specific Research Directions 

To achieve significative progress on the scientific challenges listed above it is essential to              

develop a realistic course of action that takes full advantage of the two strong points of                

the proposed centre: the original mathematical approach adopted and the unique           

combination of domains of expertise of its members. To this end, the Center proposes to               

group the theoretical research along two main categories to be developed           

simultaneously. 

Modeling the dynamics of neural activity Neurons, and more generally neural           

structures and activities are characterized by the large number of its components and             

the non-trivial dynamic interaction between them (Braitenberg and Schüz, 1998): at           

each level of activity (neurons, cortical columns, brain areas) the graphs of interactions             

change in time (Eguiluz et al., 1995). These complex characteristics are revealed by in              

neural data sets at all scales, from multi-unit registers of a hundred of neurons, to EEGs                

with hundreds of channels and to fMRI data with thousands of voxels, each channel or               

voxel reflecting the activity of millions of neurons and finally to behavioral data. 



A new class of stochastic processes –with values on a combined space of neural activities               

and interactions– must be developed to describe these phenomena and the resulting            

data structure. These processes provide the mathematical bridge between neural activity           

at different levels, from local to global, by relating the time evolution of neuron              

configurations to global probability distributions. 

The new class of stochastic processes considered in this project involve large numbers of              

interacting point processes with interaction graphs varying in time and in space. A fixed              

finite system of interacting point processes has been used to model neural activity, for              

instance by Brillinger (1975) in his modelling of two neurons of a sea slug by two                

interacting point processes. The multiscale character of neural phenomena, however,          

requires the use of large systems linked by interactions that evolve in time and depend               

on the history of the system. 

This dependence on histories can be seen already at the level of single neurons. Indeed,               

observations show that the probability that each neuron fires at a fixed time depends on               

the time-integrated synaptic input from interacting neurons. Firing happens when this           

integrated input exceeds a certain threshold within some time period. Hence the firing             

probability depends, in a variable manner, on the past and the neighboring neurons             

(see, e.g., Cessac, 2011). 

The models proposed here are natural generalizations of the chains with variable-length            

memory (see, e.g., Rissanen, 1983; Bühlmann and Wyner, 1999; Galves and           

Löcherbach, 2008). Their properties put them outside the framework of classical           

statistical physics and the usual theory of stochastic processes. New mathematics is            

needed. The members of the center, however, have the required expertise to develop             

these new theories. Indeed, the team is formed by many leading specialists in             

non-Markovian processes and non-Gibbsian measures, including variable-length       

processes, and fields (Bressaud, Fernández and Galves, 1999; Comets, Fernández and           

Ferrari, 2002; Galves and Leonardi, 2008; Galves, Löcherbach and Orlandi, 2010; Galves            

et al., 2012; Garivier and Leonardi, 2011; Gallo, 2011; Collet, Galves and Leonardi,             

2008;) and Gibbsian and non-Gibbsian formalisms (van Enter, Fernández and Sokal,           

1993; Fernández and Maillard, 2005). 

As a complementary point of view, these processes can be thought as stochastic             

evolutions of graphs. Hence, its study also pertains to the theory of random graph              

models. The central issue is to definine probability measures on the space of finite but               

large graphs and to consider their time evolutions. The current literature on brain graphs              

(Bullmore and Bassett, 2011) focuses on important but “low dimensional features” (or            

projections) of the graphs, such as degree distribution, clustering coefficient, average           

distance between pairs of vertices, etc. A more sophisticated approach is required to             

access the high-dimensional aspects of neural systems. This approach can be built from             

promising developments in graph theory, such as the powerful “coarse-grained”          

representations of graphs —Szemerédi’s regularity lemma (Sze-merédi, 1976)— or the          

continuous representations such as the “limit object” known as graphons (see, e.g.,            

Lovász, 2009). 

Graphons naturally lead to the so-called consistent local random graph models (they are             

in fact equivalent to them; see the Section 6.5.1 of Lovász, 2009), which in turns is the                 

starting point for the definition of inhomogeneous random graphs (Bollobás et al., 2007).             

These graphs encompass the most significant models of scale-free random graphs and            

are suitable to rigorous mathematical analysis. Furthermore, Bollobás et al. (2011),           



generalized this model to obtain models exhibiting high clustering, a feature of interest             

for neural datasets. The Center intends to use these models —as well as those proposed               

in Bollobás et al. (2007) to develop new models leading to efficient statistical and              

computational tools and to wider model selection principles. 

Inferring functional interaction between neural structures While neural activity         

can be directly observed, interactions between neural structures can only be inferred            

from data. Traditionally, this has been done using descriptive statistics methods like            

linear correlation, which give little insight on the mechanism underlying the dynamics of             

the neural activity (Brown et al., 2004). A different, deeper maximum likelihood model             

selection point of view was introduced by Brillinger (1988). More recently, models            

developed in statistical mechanics, e.g., the Ising model, have been used to infer the              

system of neural interactions (Schneidman et al., 2006), with the caveat that the results              

are difficult to interpret as the Ising model has no resemblance with known neural              

processes. Added to these difficulties, there is little rigorous statistical theory that justify             

the respective statistical and computational procedures. One of the goals of the project is              

to develop the statistical theory needed to analyze samples generated by large systems             

with interactions of variable range in time and space. 

This issue has many aspects to be considered, some of which have started being              

addressed by members of the proposed Center. A prioritary issue is how to infer global               

states from local observations. Indeed, in most cases the experimental data set            

represents only a sample of a tiny portion of the neural system. —even modern              

multi-unit recording can register at most hundreds of neurons, not necessarily           

synaptically connected with each other. Given this partial observation, it is not clear how              

to interpret results obtained from statistical methods designed to recover the interaction            

neighborhoods between neurons (for example Schneidman et al., 2006). In Galves et al.             

(2010), it is shown that a probabilistic method called coupling gives a natural way to               

answer this question. More specifically, the results of Galves (2010) show that when only              

part of the system is observed, and assuming that the observed realization comes from              

an Ising model, the algorithm presented by Schneidman et al. (2006) recoversthe            

interaction neighborhood up to an error which can be explicitly bounded. 

A second issue is how to infer functional interactions between components. In a toy              

model of a neural system, Lerasle and Takahashi (2011) introduced an oracle approach             

for selecting optimal interaction neighborhoods. Oracle techniques are in the forefront of            

current model selection theory and have a sound mathematical justification based on            

recent results on the theory of concentration of measures (Massart, 2007). Lerasle and             

Takahashi (2011) introduced a model selection criterion and proved a corresponding           

oracle inequality. They generlized and sharpened their work in Lerasle and Takahashi            

(2012). 

From a practical point of view, an inference problem can only be considered to be               

effectively solved if the resulting estimator is computationally efficient as well as            

theoretically sound. In the onedimensional case, efficient estimators and algorithms are           

known for inferring past dependence in variable length processes (Willems et al., 1995;             

Csiszár and Talata, 2006). But the generalization of these algorithms to higher            

dimensions seems to be an elusive problem (Csiszár and Talata, 2006). Interestingly, for             

general interactions, there is a trade off between theoretical generality and the            

computational complexity of the neighborhood inference procedure. Generality comes         



with an increase of computational demands. The control of this tradeoff is an important              

practical issue. 

Surprisingly, a large body of recent work in a different field —linear regression             

problems— yielded efficient sparse estimators for data set with a large number of             

parameters. Examples include the LASSO (Tibshirani, 1994; Efron et al., 2003) and the             

Dantzig selector (Candes and Tao, 2007). These linear regression ideas will be explored             

by NeuroMat members to obtain better algorighms for the neighborhood selection           

problem. 

Summing up, the research projects will focus in the following problems of computational             

statistics: 

1. The use of convex programming in statistical estimation, in the same spirit as             

the LASSO and the Dantzig selector, as well as other known efficient            

techniques; 

2. The study of the feasibility of basing statistical estimation on approximation           

algorithms, whenever the complexity of exact estimation is unavoidably high; 

3. The determination of the power and limitations of fast and simple algorithms            

(such as greedy algorithms). 

Progresses in these directions will require a cooperative work of computer scientists,            

mathematicians and statisticians. The development of efficient estimators is a long           

process involving the balanced interplay between statistics and computer science. The           

NeuroMat team has the necessary blend of expertise needed s to face this challenging              

issue. 

 

2.8 Case studies 

The two research directions just described will encompass a number of specialised            

projects focused on issues that are pivotal for the program of the Center. Each project               

will be lead by an experienced mathematician and involve a combined team of             

neuroscientists and clinicians. In addition, and in consistency with the formative           

objectives of the Center, each of these focalised projects will involve advanced students             

and young researchers. For the sake of concreteness, we present a more detailed             

description of one of these projects, followed by a list of other projects that are already                

being developed in anticipation to the creation of the Center. 

Modeling memory acquisition using systems of stochastic chains with memory          

of variable length The project enquires about the mechanisms underlying the           

acquisition and transformation of memories over time, with a focus on the cognitive role              

of sleep. This issue is largely unresolved, despite important recent research. In            

particular, it has been conjectured that sleep promotes the corticalization of           

hippocampus-dependent memories (Ribeiro and Nicolelis, 2004). 

To address this problem, Sidarta Ribeiro and collaborators used multi-electrode          

micro-wire arrays to perform chronic electrophysiological recordings of single and          

multi-neuron signals before, during and after the acquisition of novel memories. The            

targeted brain areas comprise the hippocampus (HP), the primary somatosensory cortex           



(S1), and the primary visual cortex (V1), chosen because of their direct involvement             

with tactile (Simons and Woolsey, 1979), spatial (O’Keefe, 1979) and visual (Hubel and             

Wiesel, 1959) processing, respectively. All three areas show persistent changes in           

neuronal activity during post-experience sleep (Ji and Wilson, 2007; Pavlides and           

Winson, 1989; Ribeiro et al., 2004, Vasconcelos et al. 2011), and respond to novel              

stimulation with robust biochemical changes related to memory processing (Wallace et           

al., 1995; Grimm and Tischmeyer, 1997; Ramirez-Amaya et al., 2005; Ribeiro et al.,             

2007). 

The experimental arrangement consists in exposing rats to novel objects for a short time              

in order to induce the construction of new memories. The recordings are subsequently             

processed to determine the evolution of the interaction network across the sleep-wake            

cycle and to seek for memory traces in the forebrain. Mathematically, the treatment of              

the recording amounts to a statistical model selection problem: A model must be             

selected to describe the sample during the periods in which a rat is exposed to a novel                 

object. The conjecture is that the selected model is a “ signature” of the reaction of the                 

animal to the new object. The question is whether the same model (the same              

“signature”) can be found during the sleep cycle. 

Model selection involves two equally important steps: (i) the choice of an appropriate             

class of candidate models, and (ii) the choice of a procedure to select a member of this                 

class. As discussed above, the Center proposes stochastic chains with memory of            

variable length as the general class of models apt to describe neural data. The second               

step, namely the model selection procedure within this class, has been addressed in a              

number of papers, starting with Rissanen (1983) who introduced the so-called Algorithm            

Context. An incomplete list of subsequent improvements includes Bühlmann and Wyner           

(1999), Galves and Leonardi (2008) (see also Galves and Löcherbach, 2008 for a             

survey). A different approach was proposed by Csiszár and Talata (2006) who showed             

that context trees can be consistently estimated in linear time using the Bayesian             

Information Criterion (BIC). 

Both the Algorithm Context and the BIC procedures require the specification of a             

constant modulating, repectively, the pruning threshold for the Algorithm Context, and           

the penalization for the BIC. These constants have no effect on the consistency of the               

algorithm, but it becomes very important for finite —even very large— samples. Recently             

Galves et al. (2012) introduced the Smallest Maximizer Criterion which is a constant free              

procedure that selects a context tree model, given a finite data sample. 

A further important issue in the analysis of systems of spike trains is the determination               

of the alphabet needed to describe the sample configurations. Researchers of the Center             

have also a novel idea for this issue: For each novel stimulus select a family of models                 

respectively adapted to the system of spike trains produced by different subsets of             

neurons. This approach open the tantalizing possibility of identifying interactions          

between neurons through the different context-tree models selected for different subsets           

of neurons. 

This line of investigation is presently being developed by a Research Cell of the NeuroMat               

project, formed by the mathematicians A. Galves and J. Garcia, the neuroscientists S.             

Ribeiro and N. Vasconcelos and a statistics PhD student K. Yaginuma. 

Further projects The following is a list of projects already started by members of the               

proposed Center. Two features are noteworthy: Each cell involves scientists of           



complementary disciplines, and each of the projects is based on experimental data            

collected by participants of the project. 

Inferring brain interaction graphs using electroencephalographic recording       

with applications to the follow up of stroke patients. Research cell: C. Vargas             

(neuroscience), D. Fraiman (statistical physics), A. Galves (mathematics), plus a postdoc           

to be appointed. Data collected by Claudia Vargas. 

Kolmogorov-Smirnov projective test for fMRI data. Research cell: G. Xavier          

(neuroscience), A. Iambartsev (mathematics), J. Garcia (mathematics). Data collected         

by G. Xavier. 

Using splines to characterise fMRI data. Research cell: N. Garcia (mathematics), G.            

Xavier (neuroscience). Data collected by G. Xavier. 

Non-parametric tests of hypotheses for neural networks. Research cell: R.          

Freiman (mathematics), F. Leonardi (mathematics), F Fregni (neuro clinician). Data          

collected by F. Fregni. 

Bayesian algorithms to assist clinical diagnosis in AVC patients. Research cell: V.            

Gonzalez-Lopez (mathematics), J. Garcia (mathematics), L. Rizzo Batistella, (neuro         

clinician). Data from databases of the Lucy Montoro rehabilitation center. 

The ongoing research. Updated reports on the subprojects currently under          

development by the Reseach Cells of the NeuroMat team will be periodicalymade            

available at our website: http://neuromat.numec.prp.usp.br 

 

2.9 Role of technology transfer and dissemination activites 

The whole of the project is organized as an interplay between theoretical advances and              

technology transfer. There is a two-way communication between both activities. On the            

one hand, the theoretical research relies on data provided by rehabilitation institutions            

and is oriented by clinical needs. On the other direction, theoretical research is expected              

to assist on diagnosis and recovery evaluation and give new insights to clinicians             

designing rehabilitation techniques. 

Regarding dissemination activities, a research enterprise of the scope of NeuroMat can            

not survive without public awareness. This awareness is needed to justify the required             

support in resources and to ensure its perpetuation over a period of several years.              

Dissemination is, at the same time, crucial to attract the steady flow of young              

researchers needed to keep the Center alive with people and ideas. The Center has              

designed, therefore, an intense program of activities to bridge the gap between scientific             

production and knowledge dissemination. 
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