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Overriding question: 
How is it possible that the brain maintains the balance 
between excitation and inhibition?

A global strategy is architecturally divergent. We seek to 
find a simple, local model of excitation/inhibition 
homeostasis able to give us an interesting dynamical 
system with many degrees of freedom.

This is related, and confused, with the idea of criticality



 Dynamical criticality: the simultaneous presence of a large set of 
dynamically critical features such as Hopf bifurcations. Each would 
typically require independent fine-tuning; collectively they would 
require fine tuning of many parameters simultaneously, unless 
somehow “self-tuned”. Example: extensive number of zero Lyapunov 
exponents in shell models of turbulence (self-tuned, but ill-
understood)

 Statistical criticality: the presence of wide-range temporal and 
spatial scales, power-law distributions, etc. Can be obtained in phase 
transitions by tuning of a small number of parameters, and in some 
systems (self-organized critical) in the absence of tuning. Examples: 
critical Ising model (needs tuning) and standard sandpile (SOC). 
Standard examples are not smooth dynamical systems though. 



 Dynamical systems theory holds that systems of interest 
should be structurally stable: their behavior should not 
drastically change with small changes in the formal definition of 
the dynamics.

 Thus high-order dynamical criticality, the simultaneous 
presence of many modes with critical features such being at a 
Hopf bifurcations, is not expected to be ever observed in a 
natural system.

 However natural systems lacking such structural stability are 
not infrequent: neuroscience provides many dynamically critical 
systems as examples.



Dynamical criticality in neuroscience
 line attractors in motor control
Seung et al., Neural Networks 11, 1253-1258 (1998); 
Neuron 26, 259-271 (2000).

…and decision making
Machens, Romo, Brody, Science 307, 1121-1124 (2005).

 self-tuned Hopf bifurcations in the auditory periphery
Camalet et. al  PNAS 97, 3183-3188 (2000), Eguíluz el al. 
PRL 84, 5232-5236 (2000), Moreau & Sontag PRE 68, 
020901 (2003)

…and olfactory system
Freeman & Holmes, Neural Networks 18, 497-504 (2005)



Statistical criticality
 phenomena displaying wide range of spatio-

temporal scales, power law distributions.

 as with bifurcations, these states might require 
fine-tuning of parameters.

 or… self-organized critical states.

 needless to say: many instances in neuroscience.



Dynamical synapses causing 
self-organized criticality in 
neural networks
A. LEVINA, J. M. HERRMANN,  AND 
T. GEISEL
Nature Physics 3, 857, 2007

See also Lin M. & Chen T.-L., Phys. Rev. E 71, 016133 (2005).



Elakkat D. Gireesh and Dietmar Plenz
PNAS vol. 105, 7576–7581, 2008

Avalanches in Cortical Slices



Weak pairwise correlations 
imply strongly correlated 
network states in a neural 
population
Elad Schneidman, Michael J. Berry II, 
Ronen Segev & William Bialek

Nature 440, 1007, 2006

Analysis of experimental data from  
retinas of larval tiger salamander and 
guinea pigs.



V.M. Eguíluz, et al.
Phy. Rev. Lett. 94, 018102 (2005).

Scale free correlations in the brain
(Functional MRI data)



Ṁ = α(I− xxT )

The bare bones model

linear activity

anti-Hebbian learning

not relevant yet

ẋ = Mx+ �(t) +O(x2)

Phys. Rev. Lett. (2009)



Evolution of the eigenvalues of a random initial matrix
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Because the right-hand-side of the M equation is symmetric, 
the antisymmetric component is an invariant of the motion: 

ẋ = (A+ S)x

Ṡ = α(I− xxT )

Ȧ = 0

PNAS (2008), Front. Neural Circuits (2010)
STDP



S̈ =
d

dt
Ṡ = −α

d

dt
xx� = −α(ẋx� + xẋ�)

xx� = I − Ṡ/α

S̈ = −α
�
(A+ S)(I − Ṡ/α) + (I − Ṡ/α)(A+ S)�

�

S̈ = −2αS + [A, Ṡ] + {S, Ṡ}



S̈ = −2αS + [A, Ṡ] + {S, Ṡ}

Ṡ = [A,S] = i[−iA, S]

time derivative of Heisenberg equation 
with  Hermitian Hamiltonian

O(α)

−iA
S̈ + 2αS = 0

O(
√
α)

harmonic oscillator

i.e., synaptic plasticity timescale

new timescale, between electrical, given by the non-evolving 
synaptic weights, and plastic, given by the learning rate



Top row, globally coupled (unrestricted A). Bottom row, nodes arranged in one dimension with periodic 
boundary conditions; only entries of A up to third nearest neighbor are allowed to be nonzero. First 
column, a display of the spatio-temporal dynamics. Second column: the distribution of the number of 
simultaneously active units in the dynamics (blue) and in surrogate data (red); compare to [9]. Third 
column, sizes of avalanches (blue), vs. surrogate data (red); note in the 1D case the power-law distribution 
of avalanche sizes, while the globally coupled (1-D) case shows a piece of a power-law followed by a 
large lump of rather large avalanches (as clearly visible in the spatiotemporal plot). Fourth column, 
marginal distribution of the values of x (invariant under surrogation).

Statistical criticality in our model



Model summary
 Simple model of “neural tissue”, with anti-Hebbian dynamics 

that permits the system to use the symmetric components of 
its synaptic connectivity to poise itself at a dynamically 
critical state and becomes infinitely susceptible to input which, 
once applied, can reverberate for long times.

 In the absence of inputs, the system evolves around the 
line of instability with three time-scales; two of these, 
electrical neural activity and the synaptic timescale, are 
physical timescales and the third one bridges other two. 

 Learning can be encoded in the antisymmetric part of the 
connectivity. Possibly, only inputs that are Granger causal can 
be learned.

 The system generates power law statistics with sometimes 
anomalous heavy tails as well.



Miller et al, J. Neurosci. (2009)

ElectroCorticoGraphy (ECoG)

Subjects performing finger tapping

Testing the model
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where C is a normalization constant. A maximum likelihood

method is used to estimate the scaling parameter α and the lower

bound xmin.

The power-law form of a distribution can be visualized as a

straight line in a log–log plot of the histogram. However, these

plots are usually noisy at the right-hand end of the distribution

because of sampling errors. An advantageous method of plotting

the data is to calculate a cumulative distribution function (New-

man, 2005). In this case, instead of plotting a histogram, we plot

the probability P(x) that x has a value greater than or equal to x :

P (x) =
� ∞

x
p

�
x �� dx �

(3)

If p(x) is power law, then the cumulative distribution function

P(x) also follows a power law. Interestingly, P(x) is simply pro-

portional to the rank of x (Newman, 2005). This means that to

make a plot of P(x) we first sort the data in decreasing order of

frequency, number them starting from 1, and then plot their ranks

as a function of their frequency. All cumulative plots in this paper

were made in this way (Figures 3D,E and 4 and in Supplementary

Material).

2.3. SIMULATIONS

Two simulated signals were generated to validate the analysis

and the conclusions we derived from the data: a white noise

process and a Wiener process (random walk). In the white noise

case, the signal of each channel is independent and draw from a

Normal Distribution (mean = 0, SD = 1). In the case of a Wiener

process, the signal of each channel is obtained by integrating

the white noise signal, so that the Wiener signal at each chan-

nel is V Wiener
i (n + 1) = V Wiener

i (n) + ψi , where ψi is a normal

distributed random number (mean = 0, SD = 1). The important

difference between both simulated signals is in the power spec-

trum. White noise has a flat spectrum across frequencies while a

random walk generates noise with a S ∼ 1/f power-law spectrum

(see, for example Miller et al., 2009a).

3. RESULTS

The results illustrated in Figures 1 and 2, and Figures 3 and 4,

provide evidence that human ECoG potentials are dynamical and

statistically critical, respectively. Figures 5 and 6 illustrate how our

analysis can be used to distinguish between rest and task related

activity during a finger-movement task.

3.1. DYNAMICAL CRITICALITY

ECoG electric potentials typically vary with an amplitude in the

range of tens of µV. In Figure 1A we show the trace of an ECoG

potential recorded from one electrode during 28 s. Within this

period, subjects were cued to move different fingers in 2 s blocks

(shaded areas) separated by 2 s of rest. Figure 1B displays the

time evolution of the potential of all 64 electrodes on a window

of 250 ms; this time series is fitted with an AR(1) whose regres-

sion matrix is shown in Figure 1C. The eigenvalues of this matrix

are shown in Figure 1D as complex numbers, with the absolute

value corresponding to the stability parameter and the phase to the

FIGURE 1 | ECoG potentials were registered at 1 kHz during 10 min using

grids of 48 or 64 electrodes (Miller et al., 2009c). (A) we show the ECoG
potential of one electrode during 28 s. The color shading indicates periods in
which subjects were cued to move an individual finger. Cues were presented
in blocks of 2 s separated by 2 s blank screen periods. (B) Zoom-in

corresponding to 250 ms [rectangular area in (A)], showing all 64 electrodes.
(C) Regression matrix corresponding to the AR(1) model fitted to the time
series shown in (B). (D) Eigenvalues of the matrix shown in (C). Each
complex eigenvalue is characterized by a frequency and a stability parameter
(absolute value).
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time evolution of eigenvalues during 200 ms. color indicates the 
magnitude of the projection of the signal in each mode.
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FIGURE 2 | Dynamical criticality in human brain ECoG potentials. (A)
Absolute value of the eigenmodes (stability parameter) derived from the

estimated AR(1) models, plotted during 600 ms (black dots). The

eigenvalues are concentrated close to the critical value (blue line), an

evidence of dynamical criticality. (B) Zoom-in of the data A on a 30 ms

window. Each colored line corresponds to the evolution of a different

mode. Red arrows indicate bifurcation points: a complex mode gives rise

to two real new born modes (and vice versa). (C) Histogram of the stability

parameter for all subjects (red), and for two synthetic data (white noise

and random walk).

frequency; the eigenvalues tend to crowd near the critical line (red
dashed line), even for higher frequencies. This is further appreci-
ated in Figure 2A, where the evolution of the eigenvalues is plotted
over 600 ms, showing also how there are transient crossings above
criticality (blue line). Figure 2B is a zoom-in on a 30 ms window,
where eigenmodes were tracked individually, in order to display
the finer temporal structure of their evolution (see in Supplemen-
tary Material). The figure shows how the eigenmodes drift in and
out of the criticality zone, with their own dynamics; the instabil-
ities thus created are not long-lived because the system does not
explode in finite time.

To understand the significance of the crowding effect of the
eigenvalues, we compared their distribution in the experimen-
tal data against two simulated signals: a white noise process and
a Wiener noise process. In the case of the white noise, the fre-
quency spectrum is uniform, while for the Wiener process and
ECoG electric potentials the power spectral density has a power-
law form (Miller et al., 2009a). The red trace in Figure 2C shows the
histogram of eigenvalues for the original data over an entire exper-
iment (10 min) for all subjects. The green trace corresponds to the
eigenvalues reconstructed for a white noise signal, showing that
they are distributed over a wide but practically non-overlapping
range with respect to the original data. This is expected, given that

there are no temporal correlations in the white noise simulated
signals. Finally, the blue trace corresponds to the Wiener noise
signal. Given its definition, these simulated signals are expected
to display more temporal structure than white noise. Indeed, the
eigenvalues histogram has a peak near |λ| = 1 as the original data;
however, they do not show crowding close to the critical line, as
the distribution is much wider.

3.2. STATISTICAL CRITICALITY
We observed that ECoG potentials display statistical criticality, as
presented in Figure 3. The upper plot in Figure 3B shows the num-
ber of active electrodes, Nact during 1 s for a single human subject.
Figure 3B (bottom) shows a raster plot: each row represents the
activity of an electrode and a red dot indicate the time steps where
the electrode is active. Figure 3C shows that pair-wise correlation
between electrodes is relatively weak, with mode and mean less
than 0.1. While weak, the correlation is stronger than that expected
for a random sequence, and has a long tail. In fact, as shown in
Figures 3D,E, the data are statistically critical. In Figure 3D, we
plot the cumulative distributions of the number of electrodes that
participate in an avalanche and in Figure 3E, the cumulative dis-
tribution of the size of the avalanche (e.g., the sum over Nact).
Both distributions are power law, with exponents 3.1 and 2.7. In
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FIGURE 3 | Human brain ECoG potentials are statistically critical. (A)

The procedure used to obtain the binary version of the ECoG potential
avalanches is illustrated for one channel. On the top we show the trace of
the electric potential at one channel, V (t ) as a function of time during 1 s.
The lower black trace is the absolute value of the potential |V |. We use a
threshold Vth (red line) to convert this signal into a binary string s, displayed
in red in the middle row. Each red dot correspond to a time step of the
electric potential where |V | ≥Vth (B) bottom: Raster plot of a discretized
version of the ECoG potential for an individual subject. Each red dot indicate
an active electrode: i.e., the absolute value of the ECoG potential for that
electrode (ordinate) is above a threshold at that time (abscissa). The
threshold was set to 3.5 SD, where SD is the mean standard deviation,
averaged over all electrodes. Top: the number of active electrodes (Nact) as a
function of time. An avalanche of activity is any activation event separated
by regions of Nact = 0. (C) Histogram of the linear pair-wise correlation
coefficient (Pearson) calculated between all pairs of binary sequences
corresponding to the activation of each electrode. (D) The number of unique
electrodes that participate in the avalanche (1,. . ., Ne) are power law
distributed (red). The red line is a power-law fit of the data (shifted for
clarity). Both simulated signals do not show a power-law distribution. (E)

The size of the avalanches is also power law distributed (see Figure 4 to
see the results for all subjects).

contrast, the white noise and Wiener noise signals do not show

statistical criticality, demonstrating that the network cooperative

effects are significant. Statistical criticality is ubiquitous among

subjects (Figure 4). Although there are differences among sub-

jects, all distributions are long-tailed and power law in a certain

range. The red and blue dotted lines are power-law functions with

the fitted exponent for the distribution of the size of the avalanche

and the number of participating electrodes, respectively. The range

in which the distribution is power law is illustrated by the range of

the dotted line. In Table S1 in Supplementary Material we present

a summary of the results for all subjects.

3.3. CRITICALITY AND FUNCTION

The functional implication of dynamic criticality is based on the

concept that a system close to instability is more readily excited,

or susceptible to perturbations (inputs), than a stable one. To

demonstrate a functional role of criticality, we compared peri-

ods of rest (cue-off) with periods where the subjects were cued

with a word at the screen indicating the finger they had to move

(cue-on). We compare them by calculating the number of unsta-

ble modes (Nu), i.e., modes whose eigenvalues exceed the critical

line. We found that Nu is larger in cue-off than in cue-on periods

in all subjects (Figures 5A,B). The difference is small in magni-

tude (the relative difference is shown in Figure 5A) but significant

(p < 0.05 in 9 of 11 subjects) as shown in Figure 5C. Given that

the mean and the variance of the raw potential does not have

any significant difference between cue-on and cue-off periods

(see in Supplementary Material), we argue that the differences

are based only on a change in the dynamical criticality of the

system.

In contrast to what we observe with the dynamical behavior

between cue-on and cue-off conditions, power-law distributions

(characteristic of statistical criticality) does not seem to be dis-

criminative. While we found a difference in the total number of

active units between conditions for two subjects, this is not consis-

tent across the data set. Moreover, the two conditions show similar

distributions for the size of avalanches and the number of active

electrodes (in Supplementary Material).

The dynamical approach can provide further functional

insights. We depict in Figure 6 the result of analyzing the spa-

tial support of the eigenvectors, i.e., the absolute value of the

vector’s components laid on the two-dimensional ECoG grid.

Figure 6A depicts, for the 9 more unstable vectors, the relative

difference between the average for cue-on and cue-off conditions.

This analysis shows that the differences are sparse and spatially

structured, focused in sensorimotor and visual areas covered by

the ECoG array, which emphasizes the spatiotemporal nature of

the brain interactions involving a relatively simple task. The dif-

ferences between the conditions can be measured statistically. This

is represented in Figure 6B which shows a histogram of the eigen-

vector weight for one particular electrode of the most unstable

mode, for both conditions (p < 10
−5

, KS-test).

4. DISCUSSION

Structural stability of systems has been a basic tenet of non-linear

dynamics theory: the qualitative behavior (defined, for instance,

by an attracting fixed point or limit cycle) should not change

upon small perturbations; reciprocally, transitions between dif-

ferent dynamical states should be exceptional (Guckenheimer and

Holmes, 1983). This concept has deeply influenced systems neu-

roscience: one of the dominant paradigms is attractor neural

networks, in which computation is defined by the presence of

structurally stable fixed points, so much so that these are the
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FIGURE 5 |The number of unstable modes is larger in cue-off than in
cue-on periods for all subjects. (A) Relative difference (%) between the
mean number of unstable modes in cue-on and cue-off periods for all
subjects. The blue bars correspond to the% of unstable modes in the cue-off
condition and superimposed red bars correspond to the cue-on condition. (B)

Difference between the % of unstable nodes in cue-off and cue-on
conditions. This quantity is always positive, therefore there is always more
unstable modes in cue-off than in cue-on periods. (C) The differences in the
distribution of unstable modes is significant in 8 of 11 subjects. (p < 0.05,
Kolmogorov–Smirnov test, blue line: p = 0.05).
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FIGURE 6 | Mapping of the eigenvectors. (A) Relative difference between
the mean eigenvector of cue-on and cue-off periods corresponding to the 9
most unstable modes for one subject (top left: most unstable; decreasing
order from left to right, top to bottom). Each red circle corresponds to a
component of the eigenvector. Its size and color represents the magnitude of

the difference between conditions (eigenvector weight). The maximum
difference is indicated below each subplot. The position of the red circles
correspond to the position on the brain of each electrode of the array for this
subject. (B) We show the eigenvector weight distribution for most unstable
eigenvector and the component with larger difference between conditions.

study is Miller et al. (2009c); the authors report individual digit
representation in adjacent ECoG electrodes (Miller et al., 2009c),
separated by 6 mm, speaking by itself of the high spatial resolution
of ECoG. This observation has a direct implication for our find-
ing, consistent with previously published reports (He et al., 2010),
of statistical criticality in ECoG. One possible simple explanation
for the presence of avalanches is that electrodes pick up the activ-
ity of static and isolated common sources, perhaps at different
cortical depths, as opposed to a collective process of critically reg-
ulated activity. While this null hypothesis cannot be completely
ruled out given the limitations of current recording techniques,
the spatial task-specificity of ECoG suggests that it is unlikely.
This is confirmed by our own results: the power-law distribution
of the number of participating electrodes in an avalanche implies

that there is a finite probability that an avalanche will involve,
for instance, half of all electrodes (Figure 3D, p ∼ 10−3). Given
the restricted spatial extent of the eigenvectors associated with the
task (Figure 6A), we find the criticality hypothesis more plausible.

The dynamical criticality we observe in ECoG recordings
implies a balance between the stability of the system and its
susceptibility to internally or externally induced changes. In neuro-
dynamical terms, the functional advantage afforded by criticality
is easily understood. The modes represent the coordinated activity
of a large, distributed ensemble of neurons. Generalized instabil-
ity in these ensembles is undesirable, but a highly stable ensemble
would require a correspondingly strong perturbation to be mod-
ulated, and therefore be refractory to change. Under a local linear
approximation, the eigenvalues of the activation modes, while
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of ECoG. This observation has a direct implication for our find-
ing, consistent with previously published reports (He et al., 2010),
of statistical criticality in ECoG. One possible simple explanation
for the presence of avalanches is that electrodes pick up the activ-
ity of static and isolated common sources, perhaps at different
cortical depths, as opposed to a collective process of critically reg-
ulated activity. While this null hypothesis cannot be completely
ruled out given the limitations of current recording techniques,
the spatial task-specificity of ECoG suggests that it is unlikely.
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that there is a finite probability that an avalanche will involve,
for instance, half of all electrodes (Figure 3D, p ∼ 10−3). Given
the restricted spatial extent of the eigenvectors associated with the
task (Figure 6A), we find the criticality hypothesis more plausible.

The dynamical criticality we observe in ECoG recordings
implies a balance between the stability of the system and its
susceptibility to internally or externally induced changes. In neuro-
dynamical terms, the functional advantage afforded by criticality
is easily understood. The modes represent the coordinated activity
of a large, distributed ensemble of neurons. Generalized instabil-
ity in these ensembles is undesirable, but a highly stable ensemble
would require a correspondingly strong perturbation to be mod-
ulated, and therefore be refractory to change. Under a local linear
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 Plurality of targets
 Molecular: neurotransmitters, ion channels

 Anatomical: cortex, thalamus, brain stem

 Traditional measure of “depth of anesthesia”
 Spectral changes in specific bands (e.g. delta, gamma) inconsistent: 

some up, some down

 Changes inconsistent across subjects

 Changes inconsistent across drugs 

Anesthesia

Franks (2008), Nat. Rev. Neurosci.
Avidan et al. (2011), New Eng. J. Med.
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Changes in diagonal weight [before-after]



Off-diagonal elements (degree>1) before [source-target]



Off-diagonal elements (degree>1) after [source-target]
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