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Overriding question:
How is It possible that the brain maintains the balance
between excitation and inhibition?

A global strategy is architecturally divergent. We seek to

find a simple, local model of excitation/inhibition
homeostasis able to give us an interesting dynamical
system with many degrees of freedom.

This is related, and confused, with the idea of criticality



@ Dynamical criticality: the simultaneous presence of a large set of
dynamically critical features such as Hopf bifurcations. Each would
typically require independent fine-tuning; collectively they would
require fine tuning of many parameters simultaneously, unless
somehow “self-tuned”. Example: extensive number of zero Lyapunov

exponents in shell models of turbulence (self-tuned, but ill-
understood)

@ Statistical criticality: the presence of wide-range ftemporal and
spatial scales, power-law distributions, efc. Can be obtained in phase
transitions by tuning of a small number of parameters, and in some
systems (self-organized critical) in the absence of tuning. Examples:
critical Ising model (needs tuning) and standard sandpile (SOC).

Standard examples are not smooth dynamical systems though.



@ Dynamical systems theory holds that systems of interest

should be structurally stable: their behavior should not
drastically change with small changes in the formal definition of
the dynamics.

@ Thus high-order dynamical criticality, the simultaneous
presence of many modes with critical features such being at a

Hopf bifurcations, is not expected to be ever observed in a
natural system.

@ However natural systems lacking such structural stability are
not infrequent: neuroscience provides many dynamically critical
systems as examples.



Dynamical criticality in neuroscience

@ line attractors in motor control
Seung et al., Neural Networks 11, 1253-1258 (1998);
Neuron 26, 259-271 (2000).

@...and decision making
Machens, Romo, Brody, Science 307, 1121-1124 (2005).

@ self-tuned Hopf bifurcations in the auditory periphery
Camalet et. al PNAS 97, 3183-3188 (2000), Equiluz el al.
PRL 84, 5232-5236 (2000), Moreau & Sontag PRE 68,
020901 (2003)

@...and olfactory system
Freeman & Holmes, Neural Networks 18, 497-504 (2005)



Statistical criticality

@ phenomena displaying wide range of spatio-
temporal scales, power law distributions.

@ as with bifurcations, these states might require
fine-tuning of parameters.

@ or... self-organized critical states.

@ needless to say: many instances in neuroscience.



Dynamical synapses causing
self-organized criticality in
neural networks

A. LEVINA, J. M. HERRMANN, AND
T. GEISEL

Nature Physics 3, 857, 2007

Figure 1 Distribution of avalanche sizes for different coupling strengths «. At
a < 1.3, small avalanches are preferred, yielding a subcritical distribution. The
range of connectivity parameters near « = 1.4 seems critical. For « > 1.6, the
distribution is supercritical, that is, a substantial fraction of firing events spreads
through the whole system. These results are shown for N= 300, v =10, u=0.2,
™ = 0.025.

See also Lin M. & Chen T.-L., Phys. Rev. E 71, 016133 (2005).



Avalanches in Cortical Slices
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Weak pairwise correlations
imply strongly correlated
network states in a neural
population
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Scale free correlations in the brain
(Functional MRI data)
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FIG. 2 (color online). Degree distribution for three values of
the correlation threshold. The inset depicts the degree distribu-
tion for an equivalent randomly connected network.
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V.M. Equiluz, et al.
Phy. Rev. Lett. 94, 018102 (2005).




The bare bones model

not relevant yet

£ A

% = Mx + ¢(t) + O(22)

linear activity

M = a(I — xx7T)
\

anti-Hebbian learning

Phys. Rev. Lett. (2009)



Evolution of the eigenvalues of a random initial matrix
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Because the right-hand-side of the M equation is symmetric,
the antisymmetric component is an invariant of the motion:

x=(A+S)x

STDP

PNAS (2008), Front. Neural Circuits (2010)
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S = 205 + [A, SERESES]

X
S=[A,S] =i[—iA,S]

A o 2a9.— ) time derivative of Heisenberg equation

: : with Hermitian Hamiltonian —7 A
harmonic oscillator

/ \

O(/a) e

f l.e., synaptic plasticity timescale

new timescale, between electrical, given by the non-evolving
synaptic weights, and plastic, given by the learning rate



globally coupled
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Statistical criticality in our model

spatiotemporal dynamics simultaneously active ~ avalanche sizes _ x distribution
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Top row, globally coupled (unrestricted A). Bottom row, nodes arranged in one dimension with periodic
boundary conditions; only entries of A up to third nearest neighbor are allowed to be nonzero. First
column, a display of the spatio-temporal dynamics. Second column: the distribution of the number of
simultaneously active units in the dynamics (blue) and in surrogate data (red); compare to [9]. Third
column, sizes of avalanches (blue), vs. surrogate data (red); note in the 1D case the power-law distribution
of avalanche sizes, while the globally coupled (1-D) case shows a piece of a power-law followed by a
large lump of rather large avalanches (as clearly visible in the spatiotemporal plot). Fourth column,
marginal distribution of the values of x (invariant under surrogation).



Model summary

@ Simple model of “neural tissue”, with anti-Hebbian dynamics
that permits the system to use the symmetric components of
its synaptic connectivity to poise itself at a dynamically
critical state and becomes infinitely susceptible fo input which,
once applied, can reverberate for long fimes.

@ In the absence of inputs, the system evolves around the
line of instability with three time-scales; two of these,
electrical neural activity and the synaptic timescale, are
physical timescales and the third one bridges other two.

@ Learning can be encoded in the antisymmetric part of the
connectivity. Possibly, only inputs that are Granger causal can
be learned.

@ The system generates power law statistics with sometimes
anomalous heavy ftails as well.
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time evolution of eigenvalues during 200 ms. color indicates the
magnitude of the projection of the signal in each mode.
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Anesthesia

D

O Molecular: neurotransmitters, ion channels

O Anatomical: cortex, thalamus, brain stem

D

O Spectral changes in specific bands (e.g. delta, gamma) inconsistent:
some up, some down

B Changes inconsistent across subjects

D Changes inconsistent across drugs

Franks (2008), Nat. Rev. Neurosci.
Avidan et al. (2011), New Eng. J. Med.



stability z-value

Monkey subjects
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spectral analysis
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Monkey Subjects
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Changes
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Human Subjects
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