Universidade de Sao Paulo

Simulations of cortical network
models made of stochastic
spiking neurons

Antonio C. Roque

Department of Physics, FFCLRP
University of Sao Paulo, Ribeirao Preto, Brazil

antonior@ffclrp.usp.br



Dynamical phenomena in
networks of spiking neurons

Network topology Single unit dynamics
structural and functional intrinsic firing behavior

Emergent dynamics

Changes in ‘ Changes in neuronal
connectivity firing behavior

Plasticity

) 4




Dynamic phenomena:
brain activity patterns

* Spontaneous activity: brain activity in the
absence of an explicit task, such as sensory
input or motor output (resting-state or
ongoing brain activity)

* Evoked activity: brain activity induced by
sensory stimuli or task-related motor
response

* Pathological activity: brain activity associated
to some neurological disorder or disease



Importance of studying
brain activity patterns

e Cortical activity is not strictly determined by
sensory input but reflects an interaction of
external stimuli with spontaneous patterns
that are produced endogenously

* For example: context tree-generated
sequence of external inputs applied to a
subject at rest



Spontaneous activity (SA) patterns



Spontaneous activity (SA) of
cortical neurons 1

* Firing of cortical neurons in the absence
of external input:

— In vitro preparations of cortical tissue slices;

— In vitro cell culture preparations; |
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— In vivo cortical slab preparations;\




Spontaneous activity (SA) of
cortical neurons 2

* Firing of cortical neurons when the brain is
essentially disconnected from external
stimuli:

— Slow-wave sleep (SWS)

— Anesthesia 7\)




Spontaneous activity (SA) of
cortical neurons 3
* Firing of neurons when the subject is awake

but not submitted to sensory or behavioral
tasks: Resting state




Characteristics of cortical SA states
(as revealed by electrophysiological studies)

* Invitro and in vivo preparations, SWS and
anesthesia:

— Slow (< 1 Hz) and high amplitude network
oscillations;

— Up and down neuronal states.

* Resting state:

— Fast (> 15 Hz) and low amplitude network
oscillations;

— Irregular neuronal firing.



SA: in vitro and in vivo
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Typical signatures of SA neuronal firing

* Neurons with low firing rates
* Non-Gaussian firing rate distribution

Data from rat auditory cortex
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(B and C) Firhé rates of most neurons were low and followed a lognormal distribution.

Hromadka et al., PLoS Biology 6:e16, 2008
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Inhibitory neurons have larger firing
rates than excitatory neurons

Rudolph et al., J. Neurosci 27:5280-5290, 2007

Data from mouse visual cortex
Haider et al., Nature 493:97-102, 2013



* Irregular neuronal firing (ISI distribution)
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“Some cortical neurons
fire with Poisson-like
irregularity, but others
fire in @ more regular
fashion than Poisson”.




Questions

What are the mechanisms responsible for the
existence of neuronal spiking activity in the cortex
without external input?

Do these mechanisms depend on the structural
organization of cortical connections?

Do these mechanisms depend on intrinsic
characteristics of cortical neurons?

What mechanisms make neuronal SA irregular?



Chaos in Neuronal Networks with Balanced ¢ 1 ) :
Excitatory and Inhibitory Activity Classical” h ypot hesis
C. van Vreeswijk and H. Sompolinsky
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“Classical” model

Network: Erdés—Rényi graph (80% excitatory
neurons, 20% inhibitory neurons);

Sparse connectivity (# connections k << #
neurons N);

Integrate-and-fire (I1&F) neurons;
Conditions for SSA:

—Inhibitory synapses stronger than excitatory
synapses;
— External stimulus applied to all neurons.
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Neural Network Dynamics

Tim P. Vogels, Kanaka Rajan, and L.F. Abbott
Volen Center for Complex Systems and Department of Biology, Brandcis University,
Waltham, Massachusctts 02454-9110; crmail: vogels@brandcis.cdu

(a) Asynchronous regular activity: individual
neurons fire regularly and the population
rate is roughly constant;

(b) Synchronous regular activity: Both the
individual neurons and the population
rate oscillate;

(c) Synchronous irregular activity: individual
neurons fire irregularly and the
population rate oscillates;

(d) Asynchronous irregular activity:
Individual neurons fire irregularly and the
population rate is roughly constant.

a) Network Stability b) Firing Rates c) Coefficient of Variation
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Beyond classical models

e Networks with more realistic
architectures;

* Stochastic neuron models.



Large-scale models

Anatomical estimates:

— Probability of synaptic contact between two
cortical neurons within 1 mm: p = 0.1

— Mean number of synapses per cortical neuron:
<k> = 104

Then, minimum number of neurons in a realistic
network: N = 10° (=<k>/p)

This implies a total number of synapses of:

Ny, = 10°
These figures determine the minimum size of a
large-scale cortical model (local cortical network)



Multiscale Models

* A hierarchy of large-scale network models:
— Local cortical network models;

— Mesoscopic cortical network models (cortical
areas);

— Macroscopic cortical network model (brain size)

 Models will be built based on available connectivity
data at micro-, meso- and macroscopic scales from
various experimental techniques



Local cortical microcircuit model

* Takes into account layer and
neuron-type specific
connectivity (integrates
knowledge of many
experimental papers)

e Asynchronous-irregular
activity

* Higher firing rate of
inhibitory neurons

* Replicates well the
distribution of spike rates
across layers

e Still misses about 50% of
synapses

Potjans and Diesmann, 2014
Available at www.opensourcebrain.org
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Large-scale cortical model

* 32 areas of macaque
cortex involved in
visual processing

e Eachareais
represented by a
local microcircuit
model (previous
slide)
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Neuron models

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEFTEMBER 2004 1063

Which Model to Use for Cortical Spiking Neurons?

Eugene M. Izhikevich
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Simple spiking neuron models

1D or 2D, non-HH type models (not explicit)
Emphasis on neuronal response (spike trains)
Spikes generated by hand

Examples:

— Leaky integrate-and-fire (LIF) model (Lapicque 1907)
— Non-linear LIF models (quadratic, exponential)

— Izhikevich model

— Adaptive exponential integrate-and-fire (AdEx) model



Cortical neurons
e Different “personalities” M
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Electrophysiological classes of neocortical neurons

Diego Contreras™
Neural Netwarks 17 (2004) 633-646

Cortical neurons are classified into five main electro-
physiological categories according to their firing patterns in
response to intracellular current injection: regular spiking
(RS), intrinsically bursting (IB), fast spiking (FS), fast
repetitive bursting (FRB, also called chattering) and cells
producing low threshold spikes (LTS). These differences are
determined by the expression of different sets of ionic
conductances that also determine the integrative properties
of the neuron. Steriade, 2004

NEOCORTICAL CELL CLASSES ARE
But: FLEXIBLE ENTITIES

Mircea Steriade

NATURE REVIEWS | NEUROSCIENCE VOLUME 5 | FEBRUARY 2004 | 121



Neurons display
stochastic behavior

* In vivo and in vitro recordings of single neuron
spike trains are characterized by a high degree
of variability



Trial to trial variability in vitro

4 repetitions of the same time-dependent stimulus

brain slice | |

Modified from Naud and Gerstner, 2012



Trial to trial variability in vivo

15 repetitions of the same random dot motion pattern
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Sources of noise:
extrinsic and intrinsic to neurons

Vg WL NN -JM".w\JMl

unreliable synapses

UL

intrinsic channel
noise

quasi-random input

from many weakly

correlated neurons \

Lindner, 2016



Two types of noise model for a neuron

* Spike generation is directly modeled as a
stochastic process

* Spike generation is modeled
deterministically and noise enters the
dynamics via additional stochastic terms



Interval: Fl curves



F-1 Curve

Firing rate (F) of a neuron

as a function of its input

current (1) . 7
Each I value correspondsto =~
a constant step current
applied for a given time
Describes the input-output
transfer function of the
neuron

In general, F-I curves are
nonlinear with saturation

for high input values i

Frequéncia (f)
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Firing behavior of IF models
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Galves-Locherbach (GL) model
(Version of Brochini et al. 2016)

V,[t+1] =

V, if X, [6] = 1,

N
p(V,[f] = V) + Vi + L1t + Sw, X, [f] if X,[1] = 0.
j=1

®(V)=(T(V- V)




How to determine ®(V)?

* First, one has to choose a criterion to
determine the exact value of V at which a

spike occurs

* Second, one has to estimate ®(V) by some
empirical probability measure



V of a spike

In vitro: use the minimum A B

stimulus value, e.g. rheobase < .

current, for which a spike > P i

occurs. In this case, the T o] e

corresponding voltage valueis ~ ° “ .o © " iy

the desired V i :

In vivo: use the onset voltage ? p‘W‘lAMM E

for a spike. The problem is Lo & | TR
t (ms) V (mV)

that there are many possible
definitions of the onset
voltage.

Platkiewicz and Brette, 2010



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 9, SEFTEMBER 2004

- - . N T
Mo g wd ol f

Estimating Action Potential Thresholds From
Neuronal Time-Series: New Metrics and

Evaluation of Methodologies

Murat Sekerli, Student Member, IEEE, Christopher A. Del Negro, Robert H. Lee, and
Robert J. Butera®, Senior Member, IEEE
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where 14}, is the membrane potential where the maximum pos-
itive value of ¢{f) occurs, within the region where V"' = () for
each action potential. Thus, the maximum value of g(1) is the
maximum slope of the " versus | graph in Fig. 2(b).
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Preliminary results
Experimental data provided by César C. Ceballos

MATLAB R2015a

Figure 1
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Alternative procedure:
use the Fl curves
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Spike Probability Curves
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Work in progress

Suggestions welcome
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