Statistical analysis of AMPARO's data

Rafael Bassi Stern

Federal University of São Carlos

- 1. A description of the game
- 2. A model for learning
- 3. Building classifiers

A description of the game

The game was applied to patients with Parkinson's disease and a control group.

Steps

- Select a direction between: left, center or right.
- Algorithm determines correct direction.
- Iterate.
- Each stage uses a different algorithm.

Stages

- Warming-up
- Deterministic with hints
- Deterministic without hints
- ...
- Memory game

Each stage was designed to capture a specific type of information.

Initial goals

- Validate the information obtained from the game.
- Predict variables related to Parkinson's disease using the goalkeeper's game.

Challenge

• High dimensional features and small sample size.

A model for learning

Data description

- *i*: the stage of the game, $i \in \{1, 2, 3, 4\}$.
- j: and id for each patient, $1 \le j \le 67$.
- k: a turn number.
- X_{i,j,k}: the indicator that patient j chose the right answer in the k-th turn of the i-th stage of the game, X_{i,j,k} ∈ {0,1}.
- Y_{i,j,k}: the time spent by patient j in the k-th turn of the i-th stage of the game, Y_{i,j,k} ∈ ℝ⁺.
- S_i: level of schooling of patient *i*.

Challenge

- *n* = 67.
- Covariates: 8 time series per patient.
- *S_i* is very correlated with predicted variables.


Statistical model

$$g(s) = \frac{\exp(s)}{1 + \exp(s)}$$
$$\mathbb{P}(X_{i,j,k} = 1) = \gamma_{i,j} \cdot g(-\log(3\gamma_{i,j}) + \alpha(S_i) + k \cdot \beta_{i,j})$$

Strategy

- Data might lie on a low dimensional manifold.
- Use estimated parameters as covariates.

A model for learning

Challenge

- Obtain sparse parameter estimation.
- No analytical solution.

Solution

- Bayesian estimation with sparse priors.
- Posterior calculation via HMC (Stan).

Building classifiers

Types

- MoCA: Montreal Cognitive Assessment.
- UPDRS III: Unified Parkinson's Disease Rating Scale.
- BEST: Balance Evaluation Scale Test.

Each variable type has several instances.

response	baseline	accuracy	golden standard (moca)
updrs tot	0.54	0.66	0.72
updrs rig	0.52	0.65	0.73
best reat	0.52	0.66	0.72
best rest	0.5	0.66	0.72
moca evoc	0.5	0.69	0.8
best lim	0.57	0.75	0.75
best trans	0.5	0.7	0.74
moca vis	0.56	0.77	0.83
moca tot	0.52	0.72	-
best tot	0.5	0.72	0.72
best march	0.5	0.75	0.73

Referências