Inhibitory loop robustly induces anticipated synchronization in neuronal microcircuits

Fernanda S. Matias, Leonardo L. Gollo, Pedro V. Carelli, Claudio R. Mirasso and Mauro Copelli

We investigate the synchronization properties between two excitatory coupled neurons in the presence of an inhibitory loop mediated by an interneuron. Dynamic inhibition together with noise independently applied to each neuron provide phase diversity in the dynamics of the neuronal motif. We show that the interplay between the coupling strengths and the external noise controls the phase relations between the neurons in a counterintuitive way. For a master-slave configuration (unidirectional coupling) we find that the slave can anticipate the master, on average, if the slave is subject to the inhibitory feedback. In this nonusual regime, called anticipated synchronization (AS), the phase of the postsynaptic neuron is advanced with respect to that of the presynaptic neuron. We also show that the AS regime survives even in the presence of unbalanced bidirectional excitatory coupling. Moreover, for the symmetric mutually coupled situation, the neuron that is subject to the inhibitory loop leads in phase.

The whole paper is available here.



The Research, Innovation and Dissemination Center for Neuromathematics is hosted by the University of São Paulo and funded by FAPESP (São Paulo Research Foundation).


User login



1010 Matão Street - Cidade Universitária - São Paulo - SP - Brasil. 05508-090. See map.

55 11 3091-1717

General contact email:

Media inquiries email: