NeuroMat initiative to address research and education on brachial plexus injuries

The Research, Innovation and Dissemination Center for Neuromathematics (RIDC NeuroMat) will soon launch a multidisciplinary initiative focusing on brachial plexus injuries, called the NeuroMat Action for the Brachial Plexus Injury, or ABRAÇO. This initiative will become a go-to reference for patients, patients’ relatives, health professionals, researchers and educators who are interested in this kind of injury, that has been in the rise in Brazil, especially associated to an increasing number of motorcycle riders and accidents.

Statistics applied to neuroscience

Neurology is often considered the most difficult area in medicine. The brain is by far the most complex organ of the human body, and many scientific fields investigate it. One of these fields is statistics. Eunylson Lopes, United Statisticians, 6/1/2017. (In Portuguese)

On the Number of Bh-Sets

Domingos Dellamonica, Yoshiharu Kohayakawa, Sang June Lee, Vojtěch Rödl and Wojciech Samotij

A set A of positive integers is a Bh-set if all sums of the form a1 + ··· + ah, with a1,...,ah ∈ A and a1 ··· ah, are distinct. We provide asymptotic bounds for the number of Bh-sets of a given cardinality contained in the interval [n] = {1,...,n}. As a consequence of our results, we address a problem of Cameron and Erd˝os (1990) in the context of Bh-sets.
We also use these results to estimate the maximum size of a Bh-set contained in a typical (random) subset of [n] with a given cardinality.

Diversity improves performance in excitable networks

Leonardo L. Gollo​, Mauro Copelli and James A. Roberts

As few real systems comprise indistinguishable units, diversity is a hallmark of nature. Diversity among interacting units shapes properties of collective behavior such as synchronization and information transmission. However, the benefits of diversity on information processing at the edge of a phase transition, ordinarily assumed to emerge from identical elements, remain largely unexplored. Analyzing a general model of excitable systems with heterogeneous excitability, we find that diversity can greatly enhance optimal performance (by two orders of magnitude) when distinguishing incoming inputs. Heterogeneous systems possess a subset of specialized elements whose capability greatly exceeds that of the nonspecialized elements. We also find that diversity can yield multiple percolation, with performance optimized at tricriticality. Our results are robust in specific and more realistic neuronal systems comprising a combination of excitatory and inhibitory units, and indicate that diversity-induced amplification can be harnessed by neuronal systems for evaluating stimulus intensities.

Advancing scientific culture through Wikimedia projects

Levels of scientific culture are associated to a mass of social phenomena, according to the literature, ranging from economic measures (i.e., innovation rates, development) to sociopolitical indicators, such as political participation and inequality.

Páginas

 

NeuroMat

O Centro de Pesquisa, Inovação e Difusão em Neuromatemática está sediado na Universidade de São Paulo e é financiado pela FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo).

 

Login do usuário

 

Contato

Endereço:
Rua do Matão, 1010 - Cidade Universitária - São Paulo - SP - Brasil. 05508-090. Veja o mapa.

Telefone:
55 11 3091-1717

Email:
neuromat@numec.prp.usp.br

Contatos de mídia:
comunicacao@numec.prp.usp.br