Correlations induced by depressing synapses in critically self-organized networks with quenched dynamics

João Guilherme Ferreira Campos, Ariadne de Andrade Costa, Mauro Copelli and Osame Kinouchi

In a recent work, mean-field analysis and computer simulations were employed to analyze critical self-organization in networks of excitable cellular automata where randomly chosen synapses in the network were depressed after each spike (the so-called annealed dynamics). Calculations agree with simulations of the annealed version, showing that the nominal branching ratio σ converges to unity in the thermodynamic limit, as expected of a self-organized critical system. However, the question remains whether the same results apply to the biological case where only the synapses of firing neurons are depressed (the so-called quenched dynamics). We show that simulations of the quenched model yield significant deviations from σ = 1 due to spatial correlations. However, the model is shown to be critical, as the largest eigenvalue of the synaptic matrix approaches unity in the thermodynamic limit, that is, λc = 1. We also study the finite size effects near the critical state as a function of the parameters of the synaptic dynamics.

The whole paper is available here.

 

NeuroMat

O Centro de Pesquisa, Inovação e Difusão em Neuromatemática está sediado na Universidade de São Paulo e é financiado pela FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo).

 

Login do usuário

 

Contato

Endereço:
Rua do Matão, 1010 - Cidade Universitária - São Paulo - SP - Brasil. 05508-090. Veja o mapa.

Telefone:
55 11 3091-1717

Email:
neuromat@numec.prp.usp.br

Contatos de mídia:
comunicacao@numec.prp.usp.br