*Nicolas Fournier, Eva Löcherbach*

We continue the study of a stochastic system of interacting neurons introduced in De Masi-Galves-Löcherbach-Presutti (2014). The system consists of N neurons, each spiking randomly with rate depending on its membrane potential. At its spiking time, the neuron potential is reset to 0 and all other neurons receive an additional amount 1/N of potential. Moreover, electrical synapses induce a deterministic drift of the system towards its center of mass. We prove propagation of chaos of the system, as N tends to infinity, to a limit nonlinear jumping stochastic differential equation.