A note on supersaturated set systems

Peter Frankl, Yoshiharu Kohayakawa, Vojtěch Rödl

A well-known theorem of Erdős, Ko and Rado implies that any family ℱ of k-element subsets of an n-element set with more than members must contain two members F and F' with |F∩F'| < t, as long as n is sufficiently large with respect to k and t. We investigate how many such pairs (F,F') ∈ ℱ×ℱ there must be in any such family ℱ with and α > 1.

The whole paper is available here.

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog