Morgan André
In 2018, Ferrari et al. wrote a paper called “Phase Transition for Infinite Systems of Spiking Neurons” in which they introduced a continuous time stochastic model of interacting neurons. This model consists in a countable number of neurons, each of them having an integer-valued membrane potential, which value determine the rate at which the neuron spikes. This model has also a parameter 𝛾, corresponding to the rate of the leak times of the neurons, that is, the times at which the membrane potential of a given neuron is spontaneously reset to its resting value (which is 0 by convention). As its title says, it was proven in this previous article that this model presents a phase transition phenomenon with respect to 𝛾. Here we prove that this model also exhibits a metastable behavior. By this we mean that if 𝛾 is small enough, then the re-normalized time of extinction of a finite version of this system converges toward an exponential random variable of mean 1 as the number of neurons goes to infinity.
The whole paper is available here.
Share on Twitter Share on FacebookNeuroCineMat |
---|
Featuring this week: |
Newsletter |
---|
Stay informed on our latest news! |
Follow Us on Facebook |
---|