A Result of Metastability for an Infinite System of Spiking Neurons

Morgan André

In 2018, Ferrari et al. wrote a paper called “Phase Transition for Infinite Systems of Spiking Neurons” in which they introduced a continuous time stochastic model of interacting neurons. This model consists in a countable number of neurons, each of them having an integer-valued membrane potential, which value determine the rate at which the neuron spikes. This model has also a parameter 𝛾, corresponding to the rate of the leak times of the neurons, that is, the times at which the membrane potential of a given neuron is spontaneously reset to its resting value (which is 0 by convention). As its title says, it was proven in this previous article that this model presents a phase transition phenomenon with respect to 𝛾. Here we prove that this model also exhibits a metastable behavior. By this we mean that if   𝛾  is small enough, then the re-normalized time of extinction of a finite version of this system converges toward an exponential random variable of mean 1 as the number of neurons goes to infinity.

The whole paper is available here.

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog