A Stochastic System with Infinite Interacting Components to Model the Time Evolution of the Membrane Potentials of a Population of Neurons

K. Yaginuma

We consider a new class of interacting particle systems with a countable number of interacting components. The system represents the time evolution of the membrane potentials of an infinite set of interacting neurons. We prove the existence and uniqueness of the process, using a perfect simulation procedure. We show that this algorithm is successful, that is, we show that the number of steps of the algorithm is almost surely finite. We also construct a perfect simulation procedure for the coupling of a process with a finite number of neurons and the process with an infinite number of neurons. As a consequence, we obtain an upper bound for the error that we make when sampling from a finite set of neurons instead of the infinite set of neurons.

The whole paper is available here.

Featuring this week:

Stay informed on our latest news!

Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog