Leonardo Dalla Porta and Mauro Copelli
We revisit the CROS (“CRitical OScillations”) model which was recently proposed as an attempt to reproduce both scale-invariant neuronal avalanches and long-range temporal correlations. With excitatory and inhibitory stochastic neurons locally connected in a two-dimensional disordered network, the model exhibits a transition where alpha-band oscillations emerge. Precisely at the transition, the fluctuations of the network activity have nontrivial detrended fluctuation analysis (DFA) exponents, and avalanches (defined as supra-threshold activity) have power law distributions of size and duration. We show that, differently from previous results, the exponents governing the distributions of avalanche size and duration are not necessarily those of the mean-field directed percolation universality class (3/2 and 2, respectively). Instead, in a narrow region of parameter space, avalanche exponents obtained via a maximum-likelihood estimator vary continuously and follow a linear relation, in good agreement with results obtained from M/EEG data. In that region, moreover, the values of avalanche and DFA exponents display a spread with positive correlations, reproducing human MEG results.
The whole paper is available here.
Share on Twitter Share on FacebookNeuroCineMat |
---|
Featuring this week: |
Newsletter |
---|
Stay informed on our latest news! |
Follow Us on Facebook |
---|