Modelling intracellular competition for calcium: kinetic and thermodynamic control of different molecular modes of signal decoding

Gabriela Antunes, Antonio C. Roque, Fabio M. Simoes de Souza

Frequently, a common chemical entity triggers opposite cellular processes, which implies that the components of signalling networks must detect signals not only through their chemical natures, but also through their dynamic properties. To gain insights on the mechanisms of discrimination of the dynamic properties of cellular signals, we developed a computational stochastic model and investigated how three calcium ion (Ca2+)-dependent enzymes (adenylyl cyclase (AC), phosphodiesterase 1 (PDE1), and calcineurin (CaN)) differentially detect Ca2+ transients in a hippocampal dendritic spine. The balance among AC, PDE1 and CaN might determine the occurrence of opposite Ca2+-induced forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD). CaN is essential for LTD. AC and PDE1 regulate, indirectly, protein kinase A, which counteracts CaN during LTP. Stimulations of AC, PDE1 and CaN with artificial and physiological Ca2+ signals demonstrated that AC and CaN have Ca2+ requirements modulated dynamically by different properties of the signals used to stimulate them, because their interactions with Ca2+ often occur under kinetic control. Contrarily, PDE1 responds to the immediate amplitude of different Ca2+ transients and usually with the same Ca2+ requirements observed under steady state. Therefore, AC, PDE1 and CaN decode different dynamic properties of Ca2+ signals.

The whole paper is available here.

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog