Motor planning of goal-directed action is tuned by the emotional valence of the stimulus: a kinematic study

P. O. Esteves, L. A. S. Oliveira, A. A. Nogueira-Campos, G. Saunier, T. Pozzo, J. M. Oliveira, E. C. Rodrigues, E. Volchan & C. D. Vargas

The basic underpinnings of homeostatic behavior include interacting with positive items and avoiding negative ones. As the planning aspects of goal-directed actions can be inferred from their movement features, we investigated the kinematics of interacting with emotion-laden stimuli. Participants were instructed to grasp emotion-laden stimuli and bring them toward their bodies while the kinematics of their wrist movement was measured. The results showed that the time to peak velocity increased for bringing pleasant stimuli towards the body compared to unpleasant and neutral ones, suggesting higher easiness in undertaking the task with pleasant stimuli. Furthermore, bringing unpleasant stimuli towards the body increased movement time in comparison with both pleasant and neutral ones while the time to peak velocity for unpleasant stimuli was the same as for that of neutral stimuli. There was no change in the trajectory length among emotional categories. We conclude that during the “reach-to-grasp” and “bring-to-the-body” movements, the valence of the stimuli affects the temporal but not the spatial kinematic features of motion. To the best of our knowledge, we show for the first time that the kinematic features of a goal-directed action are tuned by the emotional valence of the stimuli.

The whole paper is available here.

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog