Neural Networks with Dynamical Links and Self-Organized Criticality

João Guilherme Ferreira Campos, Ariadne de Andrade Costa, Mauro Copelli, Osame Kinouchi

In a recent work, mean-field analysis and computer simulations were employed to analyze critical self-organization in excitable cellular automata annealed networks, where randomly chosen links were depressed after each spike. Calculations agree with simulations of the annealed version, showing that the nominal \textit{branching ratio\/} σ converges to unity, and fluctuations vanish in the thermodynamic limit, as expected of a self-organized critical system. However, the question remains whether the same results apply to a biologically more plausible, quenched version, in which the neighborhoods are fixed, and only the active synapses are depressed. We show that simulations of the quenched model yield significant deviations from σ=1, due to spatio-temporal correlations. However, the model is shown to be critical, as the largest eigenvalue λ of the synaptic matrix is shown to approach unity, with fluctuations vanishing in the thermodynamic limit.

The whole paper is available here.

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog