Signatures of brain criticality unveiled by maximum entropy analysis across cortical states

Nastaran Lotfi, Antonio J. Fontenele, Thaís Feliciano, Leandro A. A. Aguiar, Nivaldo A. P. de Vasconcelos, Carina Soares-Cunha, Bárbara Coimbra, Ana João Rodrigues, Nuno Sousa, Mauro Copelli, Pedro V. Carelli

It has recently been reported that statistical signatures of brain criticality, obtained from distributions of neuronal avalanches, can depend on the cortical state. We revisit these claims with a completely different and independent approach, employing a maximum entropy model to test whether signatures of criticality appear in urethane-anesthetized rats. To account for the spontaneous variation of cortical state, we parse the time series and perform the maximum entropy analysis as a function of the variability of the population spiking activity. To compare data sets with different number of neurons, we define a normalized distance to criticality that takes into account the peak and width of the specific heat curve. We found an universal collapse of the normalized distance to criticality dependence on the cortical state on an animal by animal basis. This indicates a universal dynamics and a critical point at an intermediate value of spiking variability.

The whole paper is available here.

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog