Stochastic Processes With Random Contexts: A Characterization and Adaptive Estimators for the Transition Probabilities

Roberto Imbuzeiro Oliveira

This paper introduces the concept of random context representations for the transition probabilities of a finite-alphabet stochastic process. Processes with these representations generalize context tree processes (also known as variable length Markov chains), and are proved to coincide with processes whose transition probabilities are almost surely continuous functions of the (infinite) past. This is similar to a classical result by Kalikow about continuous transition probabilities. Existence and uniqueness of a minimal random context representation are shown, in the sense that there exists a unique representation that looks into the past as little as possible in order to determine the next symbol. Both this representation and the transition probabilities can be consistently estimated from data, and some finite sample adaptivity properties are also obtained (including an oracle inequality). In particular, the estimator achieves minimax performance, up to logarithmic factors, for the class of binary renewal processes whose arrival distributions have bounded moments of order 2 + γ.

The whole paper is available here.

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog