EEGretrieving

Dataset and code  of the article "Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data"

Authors: Noslen Hernández, Raymundo Machado de Azevedo Neto, Aline Duarte, Guilherme Ost, Ricardo Fraiman, Antonio Galves, and Claudia D. Vargas

Date: 2020-01-29

Description: Using a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while participants are exposed to those stimuli. Herein, the structure of the chain generating the stimuli is characterized by a rooted and labeled tree whose branches, henceforth called contexts, represent the sequences of past stimuli governing the choice of the next stimulus. A classical conjecture claims that the brain assigns probabilistic models to samples of stimuli. If this is true, then the context tree generating the sequence of stimuli should be encoded in the brain activity. Using an innovative statistical procedure we show that this context tree can effectively be extracted from the EEG data, thus giving support to the classical conjecture.

[Raw data] [Preprocessed data] [Source code] [README file]

NeuroCineMat
Featuring this week:
Newsletter

Stay informed on our latest news!



Previous issues

Podcast A Matemática do Cérebro
Podcast A Matemática do Cérebro
NeuroMat Brachial Plexus Injury Initiative
Logo of the NeuroMat Brachial Plexus Injury Initiative
Neuroscience Experiments System
Logo of the Neuroscience Experiments System
NeuroMat Parkinson Network
Logo of the NeuroMat Parkinson Network
NeuroMat's scientific-dissemination blog
Logo of the NeuroMat's scientific-dissemination blog