Vinícius Lima Cordeiro, Rodrigo Felipe de Oliveira Pena, Cesar Augusto Celis Ceballos, Renan Oliveira Shimoura and Antonio Carlos Roque
Neurons respond to external stimuli by emitting sequences of action potentials (spike trains). In this way, one can say that the spike train is the neuronal response to an input stimulus. Action potentials are “all-or-none” phenomena, which means that a spike train can be represented by a sequence of zeros and ones. In the context of information theory, one can then ask: how much information about a given stimulus the spike train conveys? Or rather, what aspects of the stimulus are encoded by the neuronal response? In this article, an introduction to information theory is presented which consists of historical aspects, fundamental concepts of the theory, and applications to neuroscience. The connection to neuroscience is made with the use of demonstrations and discussions of different methods of the theory of information. Examples are given through computer simulations of two neuron models, the Poisson neuron and the integrate-and-fire neuron, and a cellular automata network model. In the latter case, it is shown how one can use information theory measures to retrieve the connectivity matrix of a network. All codes used in the simulations were made publicly available at the GitHub platform and are accessible through the URL: github.com/ViniciusLima94/ticodigoneural.
The Research, Innovation and Dissemination Center on Neuromathematics (NeuroMat) is offering a FAPESP scholarship for information technology professionals interested in being part of a breakthrough and innovative scientific project. The recipient will interact with researchers from USP and other NeuroMat collaborating institutions in activities of development, customization, maintenance and deployment of open software related to the scientific goals of the center.
The Research, Innovation and Dissemination Center on Neuromathematics (RIDC NeuroMat) is offering scholarships for information technology professionals interested in being part of a breakthrough and innovative scientific project.
Daniel Fraiman and Ricardo Fraiman
The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.
Scientific articles produced by members of the Research, Innovation and Dissemination Center for Neuromathematics (RIDC NeuroMat) were cited 1,371 times since 2013. In 2014, articles from this center were cited 45 times; in 2018, citations rose to 509. Since its inception, the RIDC NeuroMat has collectively produced 272 publications, roughly 55 items per year.
NeuroCineMat |
---|
Featuring this week: |
Newsletter |
---|
Stay informed on our latest news! |
Follow Us on Facebook |
---|