Fernando Borges, Paulo Protachevicz, Rodrigo Pena, Ewandson Lameu, Guilherme Higa, Fernanda Matias, Alexandre Kihara, Chris Antonopoulos, Roberto de Pasquale, Antonio Roque, Kelly Iarosz, Peng Ji and Antonio Batista
Self-sustained activity in the brain is observed in the absence of external stimuli and contributes to signal propagation, neural coding, and dynamic stability. It also plays an important role in cognitive processes. In this work, by means of studying intracellular recordings from CA1 neurons in rats and results from numerical simulations, we demonstrate that self-sustained activity presents high variability of patterns, such as low neural firing rates and activity in the form of small-bursts in distinct neurons. In our numerical simulations, we consider random networks composed of coupled, adaptive exponential integrate-and-fire neurons. The neural dynamics in the random networks simulates regular spiking (excitatory) and fast spiking (inhibitory) neurons. We show that both the connection probability and network size are fundamental properties that give rise to self-sustained activity in qualitative agreement with our experimental results. Finally, we provide a more detailed description of self-sustained activity in terms of lifetime distributions, synaptic conductances, and synaptic currents.
Rafael B. Stern, Matheus Silva d'Alencar, Yanina L. Uscapi, Marco D. Gubitoso, Antonio C. Roque, André F. Helene and Maria Elisa Pimentel Piemonte
Background: People with Parkinson's disease (PD) display poorer gait performance when walking under complex conditions than under simple conditions. Screening tests that evaluate gait performance changes under complex walking conditions may be valuable tools for early intervention, especially if allowing for massive data collection.
NeuroCineMat |
---|
Featuring this week: |
Newsletter |
---|
Stay informed on our latest news! |
Follow Us on Facebook |
---|